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Abstract

This study investigated the effects of the interaction between the viscous boundary layer

and the shock wave produced by a Mach 10 inviscid optimized waverider. An implicit,

Roe flux-splitting algorithm, developed by WL/FIMM, was used to solve the flow field.

A validation for the inviscid version of the CFD algorithm was accomplished by

comparing the numerical data produced by the CFD code to the analytic results derived

by Rasmussen, and by comparison to results of the explicit version of the same Roe

flux-splitting code. The computational results compared favorably. The inviscid case

studied using the implicit code produced results identical, for all practical purposes, to

those of the explicit code, though approximately twice as quickly. The results of the

viscous flow case matched well with the results predicted by theory. The lift to drag

ratio calculated, 5.74, is comparable to the results of other researchers.
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I. INTRODUCTION

1.1 Background

The waverider concept was introduced in 1958 by Nonweiler and Hilton (24),

with an expanded discussion subsequently published by Nonweiler in 1959. The three-

dimensional body Hilton and Nonweiler examined was deemed the "caret wing" because

of the distinctive caret shape of its base plane (see Figure 1-1).

WING HAPE

PLANAR SHOCK

Figure 1-1, Caret Wing Waverider

A waverider is a lifting body which is derived from a known, analytic flow field,

such as flow over a two-dimensional wedge or flow around a slender cone. The body

is designed so that the shock is attached along the waverider's entire leading edge, thus
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capturing the high pressure region behind the shock entirely on the bottom surface of

the waverider. The top surface of the vehicle is typically designed to be completely

parallel to the freestream, thus creating no wave drag or pressure drag. The substantial

difference in pressure between the freestream (upper) and compression (lower) surfaces

of the waverider generates lift. This maximizes the lift to drag (L/D) ratio, one of the

primary goals of high speed aircraft designs.

Hilton's and Nonwieler's initial waverider work was quickly followed up by

others, with the efforts concentrating on two-dimensional generating flow fields, such

as flow over wedges. Rasmussen (26) extended the waverider concept to axisymmetric

flow fields generated by slender conical bodies using Hypersonic Small Disturbance

Theory (HSDT) to analyze flow around the generating conical bodies and to develop

simplified equations which describe the shape of the waverider based upon the

generating flow field. Rasmussen's work in the 1980's concentrated primarily on

optimizing waveriders for specific flight conditions, with Mach number and generating

cone angle being the dominant parameters.

Thus far, all the work mentioned has been inviscid, i.e., the effects of viscosity

were neglected. Waveriders tend to suffer from viscous effects, as they have a

comparatively low volume and a very large wetted surface area; thus much research has

been focused on examining viscous flow over waveriders. Bowcutt, et al. (10, and 11),

examined viscous optimized waveriders, optimizing for maximum L/D, by means of

integral boundary layer methods. Corda (12) also investigated viscous optimized

waveriders derived from a flow field generated by a power-law minimum drag body,
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where a reference temperature method was used to calculate the skin friction. At high

Mach numbers, Corda's method gives higher L/D values than Bowcutt's, although

Bowcutt's method does better than Corda's at Mach numbers less than 10. McLaughlin

(21) has investigated the use of chemically reacting conical flow for the generating flow

field. Vanmol (33) optimized his waverider shape for maximum L/D using

aerodynamic heating as a constraint. Chang (6) investigated the effect of viscous

boundary layer / shock interaction on waverider optimization through the use of the

hypersonic interaction parameter X (defined in Chapter 5). Takashima (31) validated

the integral boundary layer method, using a full Navier-Stokes solver, by investigating

a viscous optimized waverider at Mach 6.

1.2 Objectives

There are several reasons for performing this thesis research. The first of these

reasons is that the determination of viscous effects on waveriders has by no means been

fully examined. For instance, the sharp leading edges and nose common to inviscid

waveriders do not take into account the extreme aerodynamic heating such vehicles will

encounter. While Takashima (31) investigated rounded leading edges, it was only for

one variety of waverider over a narrow range of flight conditions. This thesis will

significantly contribute to the database of computational solutions to waverider designs

by examining conically derived waveriders with both sharp and blunted leading edges,

including a detailed examination of viscous interaction effects, allowing a direct

comparison between the inversely designed, analytic, inviscid flow field, and the

3



numerically computed inviscid and viscous flow fields. Another primary reason for this

thesis is to provide validation results for the Wright Laboratory's high speed, implicit,

finite-volume Navier-Stokes code for a vehicle of comparable shape to the forebodies

that have been considered for the National Aerospace Plane (NASP). This code has,

to date, been run on only one three-dimensional configuration, the X-24C. Specific

objectives this thesis will accomplish are:

(1) Develop the body coordinates of an inviscidly derived hypersonic waverider,

and modify it to round the leading edges. The edges will be rounded by separating the

freestream surface from the compression surface by an appropriate amount, and then

fitting a curve between the edge points to provide a smooth leading edge.

(2) Generate a three-dimensional grid suitable for capturing the expected shock

structure and the boundary layer on the body.

(3) Apply both the Euler and the full Navier-Stokes versions of the Wright

Laboratory's three-dimensional, implicit, Roe flux difference splitting flow solver

developed by Gaitonde (15) to the hypersonic waverider and grid developed in

paragraphs (1) and (2) above.

(4) Compare the inviscid computational results to inviscid analytical results (i.e.,

Rasmussen (25) ) for similar configurations, and then examine the effects of viscosity

by comparing the viscous and inviscid computational solutions.

1.3 Methodology

Rasmussen (25) and (26), details the waverider design methodology applied

4



herein. The process is essentially an inverse design, where the waverider shape is

derived from streamlines in a previously known flowfield. The vehicle investigated in

this effort is based on axisymmetric hypersonic flow past a slender, right circular cone.

A Cartesian coordinate system, with the X-axis along the cone center, the Y-axis

pointing downward, and the Z-axis in the spanwise direction is used. Figure 1-2

illustrates the Cartesian coordinate system used in the analysis.

V"

Fretra a* 8 0

x

Compression Surface

Y

Figure 1-2, Waverider, Generating Cone & Coordinate System

Since Hypersonic Small Disturbance Theory (HSDT) is more amenable to

spherical coordinates, the Cartesian system described above was transformed to a

spherical coordinate system with the waverider's nose as the origin, the angle 0

measured from the X-axis, and qS, the azimuthal angle measured from the Y-axis in the

Y-Z plane. The basic parameters that determine the conical flow geometry are 6, the

5



cone semi-angle, fl, the shock angle, and o (,6/6), the ratio of shock angle to cone semi-

angle. Figure 1-2 illustrates the spherical coordinates used herein.

As mentioned previously, the waverider is derived using HSDT. The process

is given in some detail in chapter 2, but-the basic method used to derive the waverider

is as follows:

1. The trailing edge of the freestream surface is defined with a four-term, sixth-

order polynomial given by Rasmussen (26), Eqn (2-4). This effort will use a parabolic

top waverider, which uses only the first two terms of the polynomial.

2. The flowfield is solved analytically. For hypersonic flow around a slender

cone, an analytic solution to the Taylor-MacColl equation (7), is obtained using the

HSDT technique.

3. Now that the generating flow field is analytically defined, streamlines parallel

to the freestream are traced upstream from the freestream trailing edge until they

intersect the shock wave produced by the generating cone, as shown in Figure 1-3.

This defines the entire freestream surface and the leading edge of the waverider.

4. From the leading edge defined in step 3, streamlines are traced downstream,

using the HSDT relations, until they cross the chosen baseplane, as shown in

Figure 1-3. These streamlines define the waverider's compression surface.

Now that the waverider body is completely defined, a computational grid is

generated to define the domain in which the CFD algorithm will be applied. The

GRIDGEN package (30) was used to generate the grid. Ideally, the grid will scale with

the waverider in the streamwise direction, so that the shock wave will be captured at

6



Mach 10 Wavaudd, Naviftokm Flow

Figure 1-3, Streamlines on the Waverider's Surface

approximately the same grid location for each cross section. The scaling also preserves

computational resources, which would otherwise be wasted by calculating regions of the

flow which should remain at freestream conditions. However, due to viscous effects,

it may not be possible to maintain the shock at the same grid location, as viscous

hypersonic interaction will cause the shock to have a steeper angle than predicted by

inviscid flow theory. This is particularly true close to the waverider's nose where

boundary layer growth is rapid, and the shock/boundary layer interaction is strong.

The CFD algorithm used to obtain a computational flow solution is an implicit,

flux splitting Roe-averaged, finite-volume scheme. The Roe-averaging scheme is

7



particularly desirable in this case due to its shock capturing capability and stability at

high Mach numbers. The algorithm, as implemented by Gaitonde (16), is also quite

robust relative to grid skewness and accurate to second order in both space and time.

Numerical values of the velocity components (u,v,w), Mach number, pressure coefficient,

lift, wave drag and viscous drag obtained from the CFD code will be compared to

analytic data (25), and other numerical solutions.
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IL WAVERIDER SURFACE FORMULATION AND GRID GENERATION

2.1 Waverider Surface Formulation

The equations defining a given waverider body are derived in detail in Appendix

A. Briefly, the waverider is described by the following equations, with the coordinate

systems illustrated by Figure 1-2. Except where noted, the following equations are

derived by Rasmussen (26). To begin, the freestrearn surface is described by:

r0 = (2-1)

and the compression surface by:

r(O 2 2 82)7 = r,(M)(2 - 82)7 (2-2)

Equations (2-1) and (2-2) are given in spherical coordinates, with the nose of the

generating cone being at the origin. Note that r = r.(ý) is the leading edge of the

waverider, and ý is the included angle measured from the line of symmetry to the

leading edge. Note also that the leading edge is also the intersection of the waverider

body with the shock.

The relation of the cone half angle, 8, to the shock angle, 03, is provided by

HSDT as

= + (2-3)
2 .~82

The freestream surface of the waverider is defined by the four term, sixth order

polynomial

9



Y = R0 +AZ 2 +BZ4 + CZ6 (2-4)

where R•, A B, and C are constants which determine the curvature of the freestream

surface of the waverider. The polynomial given by Eqn (2-4) must satisfy two

conditions

Ro • Z = 0 (2-5)

a = Cos} Z = asiný,

where the angle +1 is the included angle at the baseplane.

At the baseplane, the compression surface, as derived by Rasmussen (26) is

defined by:

Rb(+) = 1 + LF 2 ((2-6)

The same form of Eqn (2-6) holds for the entire length of the waverider. The

included angle, +, however, decreases with decreasing X The shock relation parameter,

a, scales such that +o = 0 at the nose coincides with ac = R,. The shock attachment

condition, i.e., the requirement that the shock must attach at the leading edge of the

waverider, must still be met at each Y-Z cross section, and is enforced by

Y = "oS +x Z = oasin+x
(2-7)

arxcOS~x = +R +Ao'sin2+,,

An equation for a× results, since it is known that a ranges from a. = R, to a, = a.

Thus

10



UX = Ro. + l(a-R) (2-8)

where X,,/, is the non-dimensionalized length of the waverider.

Finally, from Stecklein (28), Rb, at an arbitrary Y-Z cross section is given by

R [ -+ 4RO j+ C I 2.; R ) (2-91)=bO 1 a + y,#

However, the waverider, as developed by Rasmussen (25) is unsuited to viscous,

hypersonic flow due to its very sharp leading edges. Such sharp edges magnify already

large heat transfer rates. Stecklein (28) developed a Fortran code to generate a

waverider body using the equations developed by Rasmussen (25). In the present effort,

Stecklein's Fortran code was modified to generate a waverider suitable for viscous,

hypersonic flow as follows:

1. The waverider is translated so that the n')se of the waverider is at the origin.

2. The compression surface was then moved 1 cm in the positive Y direction

to provide the necessary thickness at the leading edges to blunt them.

3. Using linear interpolation, the X coordinate at which the waverider was 1 cm

thick (in Z) was determined, as was the Y coordinate of the centerline of the

compression surface. The freestream surface (at centerline), of course, does

not vary with X.

4. Splines were fit from the interpolated point to a boundary point imposed .33

cm upstream of the interpolated point, in both the X-Y and X-Z planes. The

11



.33 cm value was determined through experimenting with various values for

the boundary point. The ends of the splines were clamped, i.e., they were

required to match the slope of the known portion of the waverider and, at the

boundary point, an (arbitrary) large value.

5. Several Y-Z planes were determined, using the splines generated in step 4 as

outer bounds, by interpolation of data from the first known plane of the

waverider.

6. The main portion of the waverider had splines fit in the Y-Z plane at the

leading edges. Again, the splines were clamped and an arbitrary boundary

point was imposed. The splines were generated first from the freestream

surface to the boundary point, and then from the boundary point around to the

compression surface.

In this effort, 28 points were added at each plane using the spline. This number

of points gave adequate definition for the model without making the model database file

overly large. The boundary point was not actually added to the waverider model as it

would have caused a sharp point, the very condition the spline is intended to eliminate.

The spline is given by a cubic polynomial:

C3,(x - . )" C,.(x - .,)3 (2-10)

P(x) = C1 + Cx -'Q + 2 + 6

where the C. are constant for each interval i. The coefficients can be solved for fairly

easily by using a divided difference table for P, (see Appendix B).

de Boor (14) gives the coefficients of Eqn (2-10) as

12



C,, = Pi(T) = ATr)

C2 = di = P1
1(t1) =,

P," (T) = [T,,t, +]g - s, - CA(2-11)
2 At,

P1 M (T,) s Si ÷+s.1 -- 2[,,T,+,]g

C4 6 (A) 2

Figure 2-1 and Figure 2-2 show the geometry obtained using the cubic splines

at the nose, and Figure 2-3 shows the geometry of the 15' plane from the nose. The

151h plane is depicted, as it is the first plane described by Stecklein's code, with the

addition of the cubic spline at the leading edge. Note in Figure 2-1 the flat spot at Y

= 0.0 caused by leaving the boundary point out of the model definition file.

000160 W •vda Non.

Y

-00=0

-0 -•W

-00o0 O= ol
000 0001 x 00100

Figure 2-1, X-Y Plane of Waverider Nose
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W&aVOIder Now

O00075

z
00050

OOO25

00000 O0O X 00100

Figure 2-2, X-Z Plane of Waverider Nose

Figure 2-4 is a three-dimensional view of the waverider model, showing the

results of the whole process described above. The modified Waverider code is in.

Appendix C.
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Figure 2-3, 15' Plane from Nose

2.1.1 Program WAVERIDER

The methods described by Rasmussen (25) and (26), outlined in the previous

section were developed into a Fortran program called WAVERIDER by Stecklein (28).

Modifications to WAVFRIDER were required to adapt the waverider model the Fortran

program produced to one suitable for viscous, hypersonic flow, as WAVERIDER was

originally intended to produce a waverider model for an inviscid flow. The modified

code defines the surface of a parabolic-top, inviscid optimized waverider, just as written

by Stecklein (28), and then adapts it to viscous flow by blunting the leading edges and

nose using the methods outlined in the previous section. It must be noted that the code

formulates a half-body about the X-Y plane of symmetry. Building the full body would

yield profit only if a non-zero yaw was considered (in which case it would be required),
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Figure 2-4, Waverider Model

or if the flow were to become asymmetric, which can occur for low speed flow. No

such cases will be examined in this effort.

WAVERIDER contains the parameters which govern the generation of the

inviscid optimized waverider: freestream Mach number, generating cone half angle and

length, maximum spanwise sweep angle, and the type of parabolic freestream surface.

The design parameters used here are given in Table 2.1. The surface grid dimensions

are given by the integers listed in Table 2.2. Note that these values do not necessarily

correspond to the number of points used in the CFD grid; they apply only to building

the waverider body database around which a CFD grid is later constructed.
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Table 2-1, WAVERIDER Parameters

Parameter Value Meaning

MACH 10.0 Freestreamn Mach number

D 5.50 Generating cone half angle, 8

L 88.41675 Generating cone length, meters

PHIL 50.00 Maximum spanwise sweep angle, •b

TYPE 0 0 indicates parabolic top waverider

Table 2-2, WAVERIDER Dimensions

Parameter Value Meaning

MCAP 45 Number of points which define freestream surface
at a given Y-Z crossplane

NCAP 90 Number of Y-Z planes defining waverider

INCR 91 Total number of points defining waverider surface
at a given Y-Z crossplane

2.1.2 Subroutine WAVEBODY

This subroutine takes the equations derived by Rasmussen (25), outlined above,

calculates the waverider body shape in spherical coordinates, scales the equations, and

finally transforms the spherical coordinates to cartesian coordinates. The primary inputs

to this subroutine are the parameters defined in the main program, WAVERIDER. The

primary outputs of this program are NCAP x INCR ordered triples ( (xy,z) coordinates)

that describe the waverider in cartesian coordinates.

2.1.3 Subroutine OUTDATA

The subroutine OUTDATA has three primary functions. The first, as suggested
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by the name, is to build the output file which describes the waverider surface. The

second is to use a cubic spline and linear interpolation techniques to build a blunt nose.

The third is to use a cubic spline fit to blunt the leading edges.

Primary input to OUTDATA are the coordinates generated by WAVEBODY, the

absolute value of the slope at the boundary points, and the number of points to use

within the cubic spline fit. The latter two items are read in when the program is

executed.

Table 2-3, OUTDAT Parameters

Parameter Value Meaning

DIM 15 Number of points used to define spline, also the
number of planes added to define the waverider's nose

SLOPE 4.5 Absolute value of the slope of the spline at the
boundary point

2.1.4 Subroutine GEOM

This subroutine, provided by Beran (8), determines the spacing of both the Y-Z

crossplanes and the distribution of points within those crossplanes. Subroutine GEOM,

as suggested by the name, determines the crossplane spacing via a geometric

progression.

2.1.5 Subroutine CUBSPL

CUBSPL, developed by de Boor (14), calculates the coefficients in Eqn (2-10).

Input to CUBSPL consists of IBC1, a flag that sets the boundary condition used; , ....,.rj,

the Z-coordinates of the endpoints of the intervals; gi(tc) ..... ,gfir), the Y-coordinate of
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the endpoints; and s1(t1),...,sj(t), the slopes at the endpoints of the intervals. For I

intervals there will be 1+1 of each of the latter three parameters.

2.2 Grid Generation

The GRIDGEN software package (30) was used to generate the three-dimensional

grid around the waverider body. There are three main steps in generating a grid with

GRIDGEN:

1. GRIDBLOCK: In GRIDBLOCK, the boundaries of the grid are defined, as

are the computational coordinates, t, TI, and ý, and their associated dimensions using a

Silicon Graphics IRIS 4D workstation. For the waverider, one block was used, although

GRIDGEN is capable of handling multi-block configurations.

2. GRIDGEN2D: In GRIDGEN2D, the distribution of points on each of the six

faces of each block is performed, resulting in the generation of surface grids on each

face of each block. This step is also performed on a Silicon Graphics IRIS 4D

workstation.

3. GRIDGEN3D: GRIDGEN3D is the final step, and requires a CRAY super-

computer. GRIDGEN3D takes the results of GRIDGEN2D and, using one of several

solution methods, generates the volumetric, three-dimensional grid. The solution is

initialized with an algebraic, trans-finite interpolation method. The volume grid, once

initialized, may be further refined by running one of several elliptic solvers for a given

number of iterations.

For the waverider under investigation here, grid generation was performed using
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the following basic procedure. In GRIDBLOCK, as mentioned above, a single block

defining the grid boundaries and computational coordinates was generated. The

upstream boundary of the block stands off .05 meters from the nose of the waverider

(see Figure 2-7) , with the domain being an elliptical cone 5 m in diameter at the nose

and 25 m in diameter at the waverider's baseplane, in the Y direction. In the Z

direction the elliptical cone was 5 m in radius at the nose and 12 m in radius at the

baseplane. Figure 2-5 and Figure 2-9 illustrate the computational domain at the

baseplane and inflow boundaries respectively. The dimensions were chosen to make the

computational domain as small as possible without having the imposition of the

freestream boundary conditions interfere with the flow solution. The t coordinate points

downstream from the nose, q is normal to the waverider body, and ý forms a right

handed system, running spanwise. Grid dimensions were set to 61 x 91 x 101 in the •,

1i, and ý directions, respectively.

In GRIDGEN2D, grids were generated on each face of the block created in

GRIDBLOCK. The most interesting was face 5, the rini face. Face 5 was first split

into two subfaces, one containing the 6 points between the nose of the waverider and

the upstream block boundary, and the other being the waverider surface itself. The

waverider surface grid was generated using the lines on database networks selection

from the GRIDGEN2D subface shape menu. In other words, the surface grid was

forced to conform to the waverider surface. Choice 10 from the subface interior point

initialization (algebraic solver) menu, interp u,v and fit to parametric surface, was used

to generate the surface grid.
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Face 4, the 4. face or waverider baseplane face, required some special attention

as well. One break point was set at both the beginning and end points of the cubic

spline on the waverider surface. This put 49 grid points on the compression surface, 12

were specified on the cubic spline, leaving 40 on the freestream surface. Points were

clustered to the leading edge at the waverider surface, and away from the centerline.

On the outer boundary a breakpoint was set almost directly above, though a little out,

from the leading edge. Again, 49 points were specified for the compression region.

Points on the outer boundary were clustered away from the breakpoint, and from the

centerline, leading to a clustering near the middle of the two subedges. This spacing

accomplished two things. First, it kept gridlines from overlapping each other, or cutting

through the waverider body, and secondly, it provided for grid clustering in the region

where the shock is expected to form. Figure 2-5 and Figure 2-6, on the following

pages, illustrate the results of this process. Figure 2-6 illustrates the grid geometry close

to the surface of the waverider.
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Similar measures were taken at the nose, or freestream plane, which is face 3,

the .. face. Choice 1 from the subface interior point initialization (algebraic solver)

menu, arclength based (Soni) TFI was used to initialize this face, and all other faces

except face 5.

On faces 1 and 2, the ý,. and • faces, GRIDGEN2D's elliptic solver was used

to reduce grid skewness near the waverider's nose. Thomas-Middlecoff control

functions, with a relaxation factor of .25, were used for the smoothing. Thomas-

Middlecoff control functions were used as they provided the best results. The small

relaxation factor was chosen so that the changes to the grid would be slow enough that

when the grid was acceptably smooth the process could be stopped. Approximately 200

iterations were required to produce an acceptable grid.

The rest of the faces of the block were rather straightforward, requiring little

special treatment. Points were clustered toward the leading edges, the nose, and the

waverider surface to improve flow resolution, particularly in the boundary layer region.

Normal to the surface, the first point is spaced .5 millimeter above the surface. This

spacing was arrived at by looking at a converged solution from a much coarser grid.

The coarse grid's first point was .5 centimeters above the surface. At the baseplane

there were about three points in the boundary layer, so the spacing in the fine grid was

made one tenth of that, to provide approximately 20 points in the boundary layer at the

baseplane. The following figures illustrate the grids produced by GRIDGEN2D on the

various faces of the block.
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In GRIDGEN3D, as mentioned previously, the volume grid was initialized using

an algebraic trans-finite interpolation method. This produced 385 skewed volumes and

19 negative volumes. GRIDGEN3D's elliptic solver, using Laplace control functions,

was then run for 12 iterations to smooth the grid. The negative volumes were

eliminated, and the number of skewed volumes remained the same. GRIDGEN3D

required approximately 5 minutes to run on the CRAY Y-MP from the time the batch

job was submitted until it was completed. The figures depicting the grid at the various

boundaries shown on the previous pages are the output of GRIDGEN3D, with ghost

points (points within the body surface) required by the computational solver added.

The ghost points mentioned above are required because finite volume codes, such

as the one used here, solve for flux across cell faces, which requires knowing the flow

at cell centers, rather than at the grid points. Ghost points are added to all boundaries,

so that cell centers can be calculated. Figure 2-11 illustrates the addition of ghost points

to a simple grid, and the resulting network of cell centers.
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MI. NAVIER-STOKES IMPLICIT FLUX SPLITTING ALGORITHM

3.1 Governing Equations

The Navier-Stokes equations are well known, and many sources provide

derivations of them. Anderson (3), among others, lists the Navier-Stokes equations as

Continuity LP + 2P-U + a-Pv + cLpw = 0 (3-1)
at ax ay az

X-Momentum Dpu +_ &aP + & + O ax. (3-2)

Dt ax ax 0 ay O-z

Y-Momentum Dpv=_p , a + __! .._ + (3-3)

Dt O-y ax 0y az

Dpw o~,o= (-4)

Z-Momentum Dpw - p + + (3

++++ __ (34

DI 8z ax 0y

Energy D pq = +±( k•a) + j.kaT
Di~~~~~ aya) y ) azaz)

+ 6u) +(w,,) ++ (ut,) + aw_) + (3-5)
ax aly az ax "

+(%) + + +
az ax oy 8z
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where E, is total energy.

The shear terms are defined as:

;,j = 8,,X(V.v) + ("a.{ + ___ (3-6)

where 8 is the Kronecker delta, and the subscripts correspond to standard indicial

notation. Note that the shear stress terms are symmetric, i.e. i --C =y.

Anderson, et al. (1) presents equations (3-1) through (3-5) in vector form as

aU + aE + OF7+ O= 0 (3-7)

at ax 0y az

where

P
Pu

u = Pv (3-8)

Pw
E,

Pu

pu 2 +p -

E= puv - (3-9)

PUW -

L(E, + p)u - v= - • - wý3 + q,
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PV

puv + p - T"y
F P 2 - 'TO (3-10)

pvw - TO

(E, + p)v - u.- - wT + qY

pw

p uW + p - ',

G P pVw - (3-11)

pw2 - T.

(E, + p)w - uxt - i7ý - wýt + q.

The form of the Navier-Stokes equations given in equations (3-7) to (3-11) is

much more convenient than that in equations (3-1) through (3-5) for purposes of coding

the Navier-Stokes equations into a CFD algorithm. The form of equation (3-7) is easier

to code than that in equations (3-1) through (3-5) because it is more concise.

Transforming the Navier-Stokes equations to the computational coordinate system

is necessary so that the equations are consistent with the computational space. The

general transformed form of the Navier-Stokes equations is (1):
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aN ( U + f ~ + t F - Ft, + -.G ,

+ '..{I~( Q - E) + ,.(F, - F) + , -'(G- G)} (3-12)

+ - E) + - F) + - = o

The Jacobian, J, is the matrix of inverse metrics:

GI = , n, 0 (3-13)
a(X, y, ,z)

See Beran (8) for the complete statement of the Jacobian matrix.

Note in equation (3-12) that the flux vectors E, F and G have been separated into

inviscid and viscous terms. The flux vector E, for instance, is separated into E1 and E,,

where:

Pu 0

pu 2 +p

El. puv EV (3-14)

Puw

(E, + p)u Mu + v + w•= - qx

The viscous terms in F and G are separated from the inviscid terms in a similar fashio'n.

3.2 Discretization

The code developed at WL/FIMM and applied in the present research uses

several methods in conjunction with each other to discretize the Navier-Stokes equations.
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The viscous terms in the flux vectors are handled by simple centered differences. The

inviscid terms are handled by a combination of flux vector splitting and flux difference

splitting as described below.

Consider the one-dimensional, inviscid model equation:

aU + aE = 0 (3-15)

71 ax

First order implicit discretization of equation (3-15) with the backward Euler

method produces

n j+nI _ U n-,n~l

" +_ - -= 0 (3-16)

At Ax

where the subscript i+1/2 denotes the interface between nodes i and i+].

Linearization of a typical flux term yields

E~n+1 =En +rE A

OE(_ u) (3-17)
7au a +,,

=E,1 ; + (A-8u-),.

where
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A U (3-18)

5U. = U.-I - U"

Substituting equation (3-17) into equation (3-16) yields:

(SU,), (A- -). (A -8U ),_-, E"T - E
+ (Tu=_(AU). (3-19)

At Ax Ax

Flux vector splitting, in the form of the Steger-Warming algorithm (29), is used

on the left hand side of equation (3-19), while Roe flux difference splitting (8), in the

form of the MUSCL scheme (37), is used on the right hand side of equation (3-19).

The three-dimensional system in equation (3-7) is discretized very much like the

one-dimensional model system above. In order to compute the right hand side, or

residual, of the three-dimensional version of equation (3-19), the fluxes in each direction

are successively balanced. Thus

E Un - E,_.(Un)
LHS1 = "

LHS2 =L (F', 1 (U - F'-.+(U I')" (3-20)

S2yAy

LHS3 =LHS2 + [G"(U" ,-G1 -',(UT )]

where LHSI refers to the left hand side of the three-dimensional version of equation

(3-19).
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The left-hand side of equation (3-20) is calculated using Steger-Warming flux-

vector splitting (29), discussed in the following section. Roe's upwind method (8) is

used on the right hand side of equation (3-20) to calculate E,+,,ý2, F+.,, 2, and G,+,,,,. For

example:

E,= T [E(UL) + E(UR) - IA(uR - uL)]2(3-21)

The terms UR and UL are obtained from the MUSCL approach described in Section 3.4.

The "^" indicates a Roe averaged term, also described in Section 3.4

3.3 Flux Vector Splitting

Flux vector splitting is a well known technique used to improve the

computational efficiency of finite-difference schemes, as well as to make the schemes

somewhat more robust. The basic aim is to split the flux vectors such that an upwind

finite-difference scheme may be used at all points within the flow. This is done by the

simple expedient of separating the flux vectors into upwind and downwind parts. In

WL/FIMM's high speed, implicit, flux-difference splitting CFD code is used on the left-

hand side of the finite difference equation, i.e. the left hand side of equation (3-20).

Steger & Warming (29) introduce flux vector splitting in some detail. Briefly, for the

three-dimensional Navier-Stokes equations, flux-vector splitting proceeds as follows.

Equation (3-7), neglecting viscous terms, can be rewritten as

au +a 2 u au2 + C -
S+ Av + B + c.=_ = 0 (3-22)

at ax 3y 7
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where A, B, and C are the Jacobian matrices

A = oE' B = aF, C-- OaG' (3-23)

aU aU au

which correspond to the inviscid portions of the flux vectors, E, F. and G,. Note that

Ei=AU, Fj=BU, and Gj=CU by the first order homogenous property of the Euler

equations.

A finite-difference form of equation (3-22) is:

SU + D(A.-BU.") D D(B -8Uj D D(Cj 78Uj)
At A Ay AI

(3-24)L E11  DFJM  DG1  1
Ax Ay Az

where 8 and D are the time and space difference operators, respectively:

Sf-- I -f M  (3-25)

Df =- f, - f, (3-26)

Now, define the matrix P as a linear combination of A,B, and C:

P = k1 A + k2B + k3C (3-27)

where the k, are arbitrary real constants.

The system in equation (3-22) is hyperbolic if there exists a similarity transformation

such that
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X 1 0 0 0 O"

0 ). 2 0 0 0

Q -pQ = 0 0 X3 0 0 =A (3-28)
o oo o•

0 0 0 0 X 5

The (general) flux vector is given by

.9= QAQ-'U (3-29)

Note that the Jacobian can be diagonalized due to the hyperbolic nature of the inviscid

fluxes. The eigenvalues, k., of the 5x5 matrix, A, are arbitrary, but real. The matrix Q

and its inverse are calculated as follows:

Q = MT Q-' = T-1 M-1  (3-30)

The matrices A, T, and their inverses are given by Warming (35).

The splitting comes in through the eigenvalue matrix, A. It is split into two

matrices, A' and A7 via the splitting of the eigenvalues, X,:

= -- , + lxIXi) = I.(xk - 1xI) (3-31)

Thus, the flux vector is split by using A+ and A- in place of A in equation (3-29),

so:

r = QA.Q -U r = QA-Q-U (3-32)

Hence, in equation (3-24) the terms operated on by the D/Ax operator can be rewritten

as:
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Tx T T T (3-33)

= A,+8U, + 18 U,. - ,A u_ + A,-8 )

3.4 Roe Algorithm

Beran (8), presents the Roe scheme for a one dimensional system of equations

such as in equation (3-15), as

(3-34)

Hr. Y- .(E + E, -+ IIR^(JA, - Ui-

As mentioned in Section 3.2, the code developed by WL/FIMM uses a variation

of the Roe scheme, Monotonic Upstream Scheme for Conservation Laws, or MUSCL.

MUSCL is a form of a TVD, total variation decreasing, scheme. Yee (37) presents the

MUSCL scheme using a simple, one dimensional hyperbolic equation. Starting from

equation (3-34) the MUSCL scheme replaces the U,+, and U5 terms with U,1 and UJiu

respectively. UV and 17L are given by

R+ = .- (i -T)T, + , + + (3-35)

and

40



UL U [l-ýA ( ý)k.4 (3-36)

where:

-1: upwind scheme

0: Fromm scheme (3-37)
1/3: third order upwind biased scheme

1: three point central difference scheme

A U = minmo(U÷,4  -+ (U,c) (U, - U,)) (3-38)

A,. U minmod(U ., (U,. 2 -+ ,.1)) (3-39)

< <j <3 (3-40)

and, finally

minmod(x,y) = sgn(x) max{O,min[(xI ,ysgn(x)I]} (3-41)

Note that sgn(x) means the sign of the variable x. Note also that the minmod slope

limiter, equation (3-41), is not the only limiter that may be applied.

The "A" in the above equations refers to Roe averaging, which is given by:

F U L + uRU (3-42)

The L and R subscripted variables in equation (3-42) refer to the components of the like
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subscripted vector U in equations (3-35) and (3-36).

3.5 Boundary and Initial Conditions

There are four basic boundary conditions imposed in the waverider problem:

freestream conditions, surface conditions, symmetry conditions and no-change

conditions. The initial conditions were simply uniform flow at freestream conditions.

The freestream conditions were imposed on the •n face and the ie face.

Fluxes on the freestream boundaries were calculated using the values for Mach number,

temperature and pressure assigned in the initial conditions. On the tmn face, the inflow

condition is specified by

U = U= (3-43)

where U is the vector given in equation (3-8).

Similarly, the freestream condition is given on the t. face by

U.,k = U, (3-44)

The boundary conditions at the waverider's surface are a bit more complicated.

The viscous terms are calculated directly from the conditions specified at the surface for

temperature and zero velocity. Because the computational grid is cell centered, the

conditions at the surface are imposed by setting the conditions at the ghost points just

within the surface. Thus, for the u-component of velocity
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Ulk = -u,,2k (3-45)

identical relations are used for the other velocity components, v, and w. Furthermore,

pressure is held constant between the ghost point and the first point above the surface:

P,41,k = P1,2,k (3-46)

Temperature at the ghost point is calculated using:

T,lk = 2 TwaI - Ti,2,k (3-47)

The inviscid fluxes are calculated directly from the pressure and the metrics.

Since the inviscid energy and mass fluxes normal to the surface are both zero, the fluxes

are given by:

0
PmIx

U P(3-48)
Pr12

0

Recall from above that the pressure is assumed constant between the ghost point and the

first point above the surface. Note also that the metrics are calculated at the wall, since

wall points are actually grid points.

The symmetry boundary condition is imposed on the •, and • faces. Flux

in the ý direction is set to zero by setting the flux at the ghost points equal to the

negative of the flux at the first point out from the symmetry plane. For the C,, face this
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is:

PW,, I = -PwQ,,2  (3-49)

with the exact same form for the ým face.

A no-change condition is applied to the outflow boundary, the ým face. The no-

change condition is imposed by simply setting the fluxes at the ghost point equal to

those at the first point upstream of the boundary, thus:

_.,,k =,. (3-50)

When calculating quantities such as the lift to drag ratio, L/D, the calculations were

simply terminated at the outflow boundary.

3.6 Computer Code Description

Wright Laboratory's three-dimensional, implicit, flux-splitting, Navier-Stokes,

Fortran code developed by Gaitonde (15) under contract to WLiFIMM, was used to

solve the viscous, hypersonic flow over a Mach 10, inviscid-optimized waverider,

modified for viscous flow. The code was debugged on the ASD CRAY X-MP super-

computer using a Silicon Graphics IRIS workstation as an interface. The debugged code

was transferred to an IRIS workstation in the AFIT computer laboratory from which it

was sent to the CRAY Y-MP at the Ohio Supercomputer Center (OSC), where all

solution runs were performed. Access to the OSC CRAY was through a grant for

research on Numerical Solution oflniscid/Viscous Hypersonic Flow Around a Conically

Derived Waverider, grant number PIS009-2. Connection to the OSC CRAY was made
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via telnet from the AFIT IRIS workstations.

Two data files were required for execution of the code: cnldat and cnigrd. The

first file, cnldat, contains information such as the version of the code to run (Navier-

Stokes or Euler), whether to use an implicit or an explicit formulation, initial conditions,

boundary conditions, and so forth. The cnldat file has essentially four parts: solution

integration parameters, flow field conditions, boundary conditions, and control

parameters. A listing, by category, of the input data file follows. A sample cnidat file

can be found in Appendix D.

The first table, Table 3-1, lists the parameters that control the implementation of

the solution, particularly such things as which finite difference scheme to use, i.e., Roe,

Lax-Wendroff, or Van Leer. Other parameters include the ending iteration number,

whether the flow model is Euler or Navier-Stokes, what the CFL stability criteria is, and

how it is handled. Table 3-2 details the flow field conditions, particularly the freestream

conditions and the orientation of the waverider, along with some data about the

waverider itself, such as surface temperature. Table 3-3 lists the boundary condition

parameters, and the node range in which they apply.
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Table 3-1, Solution Integration Parameters

ICASE Finite Difference Scheme: l=Roe

NEND Number of iterations

INS Flow model: I=Navier-Stokes, O=Euler

IL,JLKL Grid Dimensions

CFLMAX Maximum CFL number allowed

CFL Starting CFL number

CFLEXP Number of iterations before CFL doubles

ICFL Number of iterations between CFL increases

IIPC Driver: l=Backward Euler, l=Predictor-Corrector

IMPLT Implicit vs. Explicit: O=Explicit, l=Implicit

Table 3-2, Flow Field Conditions

IADBWL Flag to indicate adiabatic wall BC

ALPHA Angle of attack

PHI Yaw angle

TWALL Wall temperature

RMINF Freestream Mach number

REL Reynolds number per foot

RLSCL Scaling factor

TINF Freestream Temperature

Table 3-3, Boundary Conditions
IIBC Start and end points for a ý BC

JBC Start and end points for an il BC

KBC Start and end points for a ý BC

IBCTYPE Boundary condition type imposed
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Table 3-4, Control Parameters

IREAD O=Deadstart, l=Restart

IGRID Grid format

IP3DOP Plot3D output file format

MODPR Iterations between printing convergence data

The file cnlgrd contains, in binary format, the grid generated using GRIDGEN

(as described in Chapter 2). The GRIDGEN output was converted to a cell centered

grid by the routine REDUCE.F, supplied by Gaitonde. The coordinate axes defined in

GRIDGEN, • = streamwise axis, 1t = surface normal axis, and • = spanwise axis, were

maintained.

47



IV. COMPUTATIONAL RESULTS

4.1 Inviscid Flow Results

The design point for the inviscid optimized waverider being studied is Mach 10

at 100,000 feet, identical to that studied by Stecklein (28). Table 4.1 lists the design

parameters. The design point should, for the inviscid case, produce the best lift to drag

(L/D) ratio possible for the waverider as that is the condition the waverider was

optimized for.

Table 4-1, Waverider Design Parameters

Parameter Value

Mach Number 10

Altitude 100,000 ft

Freestrearn Temperature 406.7 OR

Wall Temperature 530 OR

Freestream Density 3.32 E-05 slugs/ft'

Freestream Pressure 22.43 lbs/ft2

4.1.1 Unmodified Waverider

In order to establish consistency between the implicit version of the CFD

algorithm and the explicit version, an inviscid case, using a waverider model and grid

identical to that used by Stecklein (28), was run to a fully converged solution.

Convergence is defined as occurring when the residual drops below 10". The residual

is given by

For plotting purposes, the residual as defined in equation (4-1) was normalized by the
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value calculated for the first iteration.

Stecklein (28) computed a value of 8.18812 for L/D in his work, using the

explicit version of the code. The implicit version of the code returned a value of

8.18813. The two values differed in the fifth decimal place.

The main difference between the results from the implicit and explicit versions

of the code is the convergence history. The implicit case was fully converged, using

local time stepping, within about 300 iterations, and an argument could be made that

convergence was reached in only 250 iterations, as illustrated by Figure 4-1.
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Figure 4-1, Inviscid Waverider Convergence History

In comparison, the explicit version of the code required over 950 iterations, with local
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time stepping, to reach convergence (Figure 4-2). The fewer number of iterations

required by the implicit method shows its strength.
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Figure 4-2, Inviscid Waverider Convergence History

The CFL number shown in the above figures is a constant used in determining

the time step, as shown by Equations (4-2) through

Att =CFLminj,ýkAtl (4-2)

where

All = 20 (4-3)
4 ++Astp

and
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0= max{I2p - XI, '-'-} (4-4)

The variable s is the distance across the cell, with the subscript indicating direction. The

variable c is the local speed of sound.

The drawback to the implicit version is that each iteration of the implicit method

takes considerably more computer time than each iteration of the explicit method. The

implicit version of the code took 0.0001 CPU seconds per iteration per node. The

explicit version required approximately 0.000054 CPU seconds per iteration per node,

approximately twice as fast as the implicit version. The explicit version, however,

requires only 85% of the memory that the implicit version does.

The shock capturing ability of both methods is essentially equivalent. Contour

plots of density on a Y-Z plane near the base plane (Figure 4-3 and Figure 4-4) shows

a very small difference between the results of the two methods. Figure 4-3 and

Figure 4-4 show the results for the Y-Z plane just upstream of the baseplane. Note that

the shock is, effectively, entirely captured by the compression surface of the waverider.

There is a slight expansion, or spillage, at the leading edge due to numerical truncation

of the waverider model, and the numerical error of the solution. The two figures are

very much alike, which is comforting, showing that the two methods reached the same

solution. The implicit method seemed to do a better job of capturing the shock, though

that, as the different placement of the contour line closest to the waverider surface, may

be due to the different convergence the two solutions went to. The results shown in

Figure 4-4 are essentially identical to those shown in Figure 4-3. There is a slight
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difference in the placement of three of the contour lines, but that can be attributed to the

different residuals of the two cases. Basically, the implicit and explicit methods

produced the same results. L/D differed in the 5"' decimal place, the shocks formed in

the same place, and the distributions of the flow variables were practically identical.
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Figure 4-4, Explicit Method, Inviscid Waverider
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4.1.2 Modified Waverider

An inviscid computational solution for the waverider modif-ed for viscous flow

gave results very similar to the unmodified waverider. A sparser grid than that used for

the Navier-Stokes case was used in an effort to conserve computer resources. The

implicit method was used exclusively on the modified waverider, again, in an effort to

conserve computer resources. The L/D ratio was slightly lower than for the unmodified

waverider, due mainly to a rise in drag. The L/D ratio was calculated to be 8.158, only

0.4% less than that calculated by Stecklein (28) for the inviscid optimized waverider.

Both lift and drag changed, drag most noticeably. The change to lift was practically

unnoticeable. A contour plot of density at the base plane, Figure 4-5, shows the shock

forming similarly to the unmodified waverider model, Figure 4-3. The same flow

spillage seen in Figure 4-3 and Figure 4-4 was noted at the leading edges, although now

it is caused more by the perturbation of the flow by the blunt leading edge than by

numerical errors in the waverider model and/or the solution.
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Figure 4-5, Modified Waverider Model, Inviscid Flow

The blunted nose produced a detached bow shock. This detached bow shock

produced very high temperatures in the nose region, since the shock was, in that region,

a normal shock. The shock quickly dissipated on the freestream surface as the flow

expanded around the nose, creating an expansion wave which intersected and canceled

the shock, although the shock affected the temperature and Mach number distribution

on the waverider's surface. On the compression surface, the shock quickly became an

oblique shock as the flow expanded around the nose, but as on the freestream surface,

flow temperature and Mach number were affected, particularly in the nose region.

Figure 4-6 shows the temperature and Mach number variation over the entire
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freestream surface of the waverider. Figure 4-7 shows a zoom of the nose region. Note

the rapid decrease in temperature away from the nose, and the somewhat slower, though

still rapid rise in Mach number to the freestream value of Mach 10. The rise in Mach

number is due to the combination of the increase in flow velocity and the drop in

temperature.

Figure 4-8 shows the Mach number and temperature distributions on the whole

of the compression surface, and Figure 4-9 shows a zoom of the nose region. The

behavior of the flow on the compression surface is similar to that on the freestream

surface, though on the compression surface the flow expands to match conditions behind

an oblique shock. As on the freestream surface, the Mach number increases, and

temperature rapidly decreases. On the compression surface, however, the temperature

is generally higher than on the freestream surface, and the Mach number lower.
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Figure 4-7, Zoom of Freestreamn Surface, Inviscid Flow
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Figure 4-9, Zoom of Compression Surface, Inviscid Flow
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4.2 Viscous Flow Results

Convergence for the Navier-Stokes equations and the computational grid required

to resolve the flow was quite slow. Small grid volumes near the leading edges and

nose, while providing good flow resolution, required very small values for the time step

in order to keep from exceeding the allowable CFL stability criteria. Figure 4-10 shows

the convergence history for the viscous flow case.

Convergence History

0.0125

0.0100

UV

0.0075

100

0 Res0.0050

0.0025

10"
250 500 750 1000 1250 1500 1750

Figure 4-10, Viscous Flow Convergence History
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The convergence went as expected, though not as quickly as desired. The

residual at first rose and then began a short series of cycles in which the maximum

residual decreased. After a significant decrease in residual another series of cycles

began in which the maximum residual reached in the cycle decreased. The CFL

stability criteria was adjusted automatically by the CFD code as necessary. At first the

CFL number was quite low, on the order of 0.09, but then rose rapidly. The CFL

number did not remain steady at the maximum allowed until approximately the 800"1

iteration. The root mean square surface pressure, or pressure residual, behaved as

expected, rising rapidly and then leveling off. A slight decrease was noted, and, after

a brief period of little to no change, the pressure residual began to rise slowly. A

constant pressure residual is a good indication that the solution is converged, as the

pressure on the waverider surface is not changing significantly, and thus the changes to

the flow structure with each iteration are very minor.

As expected, when viscous terms are included in the equations, L/D drops due

to the addition of viscous drag. The L/D ratio for the waverider in viscous flow is 5.74,

a 30% drop from the inviscid case. This value of L/D is similar to that calculated in

other solutions of viscous flow over a waverider. Another primary contribution to drag

is wave drag, which is caused by the shock waves. In this case a weak shock formed

over the freestream surface of the waverider, as illustrated by the lower part of

Figure 4-11. This shock was formed in part by the bow shock produced by the blunt

leading edges, and in part by the formation of the boundary layer. The shock on the

compression surface was also affected by the formation of the boundary layer. The
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boundary layer on the compression surface was thinner than on the freestream surface,

but had the effect of increasing the effective flow turning angle, increasing shock

strength slightly. The stronger shocks, caused by the interaction of the boundary layer

and shock waves, contributed to the drop in L/D as compared to the inviscid flow case

by increasing the wave drag. Thus viscosity contributed to drag in two ways. It

contributed directly and by increasing the strength of the shocks, and thus the wave

drag. The computed L/D ratio compared favorably with results for similar vehicles.

The computed L/D was greater than that determined by Muller (22), who arrived at a

value of 4.18 for a waverider flying at Mach 5.5, though substantially less than those

reported by Chang (6) and Takashima (31). Compared to Rasumussen's (26) analytic

work, which gave results very like those reported by Muller, the computed value was

high, though not unreasonably so. Comparing the result of 5.74 obtained in this

research to a plot of L/D such as that in Anderson (5), this result can be seen to be quite

near the predicted value, and the results obtained by others.

Figure 4-11 illustrates the pressure field at the waverider's line of symmetry.

Figure 4-11 shows the oblique shock that forms below the compression surface (though,

since the waverider is depicted herein upside down, the shock appears to be above the

waverider), and the shock and expansion that form above the freestream surface.

Figure 4-12 shows density contours for the same region as that depicted in Figure 4-11.

The shock on the compression side is clearly depicted, as is the much weaker shock on

the freestream side. Figure 4-13 is a zoom of the density contours in the nose region.

This figure shows the shock on the freestream side more clearly than does Figure 4-12.

63



Figure 4-14 shows the Mach number contours in the nose region. The expansion can

be seen here as, just above the freestream surface, the flow accelerates. Note also the

rapid increase in Mach number above the surface, indicating how thin the boundary

layer is in the nose region. Figure 4-15 is a further zoom of the Mach contours in the

region of the waverider's nose. This figure shows even better than the previous one

how thin the boundary layer is in this region. It also shows the shock structure in the

nose region quite clearly.
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The velocity vector plots, Figure 4-16 through Figure 4-18, show the steep

velocity gradients in the boundary layer quite well. The boundary layer grew more

quickly on the freestream surface than on the compression surface due to the lower

pressures. Comparing Figure 4-17 with Figure 4-18 it can be seen that, at the

waverider's trailing edge, the boundary layer on the freestream surface is almost twice

as thick as on the compression surface.

The temperature, as shown in the plots of temperature and density vs. Y

(Figure 4-19 through Figure 4-22), changes as predicted by theory for a cold wall;

climbing deeper into the boundary layer to a maximum just above the surface, and then

falling off sharply to the surface temperature. In the plots of temperature presented here,

the temperature did not reach the surface temperature as the data was calculated at the

first cell center, which was positioned just above the surface of the waverider.

Interpolation between the value at the first point above the waverider surface and the

ghost point just below the surface returns the value for temperature imposed as a

boundary condition. Figure 4-19 shows more the effects of the shock and expansion

than the boundary layer, due to the boundary layer's thinness near the nose. Figure 4-20

also shows more the effects of the expansion than the boundary layer. The sudden turn

in the plot at Y = 0.025 feet is due to the thinness of the boundary layer. The boundary

layer is entirely missed, and the flow almost jumps to the imposed boundary conditions.

The plots of flow variables in the boundary layer near the nose region show how

thin the boundary layer is there. Also, because the shock angle is so small, the plots

extend almost to the shock. A much finer grid would be required to resolve the
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boundary layer at all near the waverider nose.

The plots of temperature and density near the trailing edge, Figure 4-21 and

Figure 4-22, show the expected behavior, described above, very well. Both plots show

temperature rising sharply just above the waverider surface to a maximum that is

approximately at the center of the boundary layer, and then falling off to the temperature

at the edge of the boundary layer. Density mirrored the behavior of temperature,

indicating an almost constant pressure through the boundary layer.

The plots of velocity and Mach number, Figure 4-23 through Figure 4-26, mirror

the behavior seen in the vector plots, Figure 4-17 and Figure 4-18. As the wall is

approached the velocity drops rapidly to zero. As explained above, the values shown

don't actually reach zero velocity, as the values are not calculated on the surface of the

waverider, but rather, just above it. Interpolation between the ghost point and the first

point above the waverider surface shows that both the velocity and Mach number are

zero at the surface. The plots of velocity and Mach number near the nose, Figure 4-24

and Figure 4-23 show the effects more of the flow expansion in that region than the

boundary layer. The plot of the velocity profile above the compression surface shown

in Figure 4-23 looks like a boundary layer profile, but is actually caused by the flow

expansion in the region. The plot of the velocity profile above the freestream surface,

Figure 4-24, shows a very thin boundary layer. Like Figure 4-20, the values "jump",

that is the slope is discontinuous, at the points just above the waverider surface. This

is due to inadequate resolution of the flow in the boundary layer, and the boundary

conditions being imposed, just as explained above for the plots of temperature and
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Figure 4-21, Compression Surface Centerline Boundary Layer Data, Trailing Edge
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Figure 4-22, Freestrearn Surface Centerline Boundary Layer Data, Trailing Edge
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Figure 4-23, Compression Surface Centerline, Boundary Layer Data, Nose Region
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Figure 4-24, Freestrear Surface Centerline Boundary Layer Data, Nose Region
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Figure 4-25, Compression Surface Centerline Boundary Layer Data, Trailing Edge
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Figure 4-26, Freestrearn Surface Centerline Boundary Layer Data, Trailing Edge
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Heat transfer from the flow to the waverider was greatest at the'nose and leading

edges, as was the skin friction coefficient. Figure 4-27 and Figure 4-28 illustrate the

heat transfer and skin friction compression surface and Figure 4-29 and Figure 4-30

show these values on the freestream surface. The variation of heat transfer and skin

friction was greatest in the spanwise direction, as can be seen in the following figures.

The important thing to note in these figures is, as mentioned above, that the skin friction

and heat transfer are greatest at the nose and leading edges.
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Figure 4-27, Compression Surface Stanton Number Distribution
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Figure 4-28, Compression Surface Skin Friction Coefficient Distribution
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Figure 4-31 illustrates the variation of pressure, temperature, and velocity on the

stagnation stream line. The shock standoff from the nose is approximately 0.02 inches,

a very small distance, indicating that the stagnation region will probably comprise a

significant portion of this distance. As shown by Figure 4-31, the flow was not well

resolved in the stagnation region. A much finer grid would be required to accurately

resolve the flow in the stagnation region.

The figure does show, by inference, the extreme flow gradients present in the

stagnation region. The flow will have to slow from a little more than 5000 feet per

second to zero velocity within .025 feet. This will cause a corresponding rise in

temperature as the kinetic energy is transformed to internal energy. Temperature will

show extremely steep gradients, as it not only reaches a maximum, but then has to drop

to match the wall temperature. These extreme gradients, combined with too coarse of

a grid, make the numerical solution in the stagnation region to be of questionable value

and accuracy.

88



zeg/sql 'a inssa 'd
o oC)

o o 0C0

oU=/ 0,'900 0 u~w auouj

Fiur 4-1 StgainSramLn0lwDt

890



A Y-Z cross section of the flow near the baseplane, Figure 4-32, looked quite

similar to those of the inviscid case, as shown in Figure 4-3 and Figure 4-4. The main

differences between the viscous and inviscid cases included the boundary layer, a

compression above the freestream surface due to the boundary layer, and the shock

detaching from the leading edges of the waverider to stand off a short distance. The

baseplane showed an interesting phenomena: a lambda shaped shock, shown in

Figure 4-33. This phenomenon was caused by a flow expansion around the waverider's

leading edge meeting the high pressure region on the compression surface. The strong

compression from the low pressure just inboard of the leading edge to the pressure on

the main part of the compression surface caused the shock to form. This shock structure

did not exist two planes upstream of the baseplane; a single detached shock appears, as

pictured in Figure 4-34, which is two planes upstream of the baseplane.
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V. THEORETICAL AND NUMERICAL ANALYSIS

5.1 Boundary Layer Equations

The compressible boundary layer equations are derived directly from the Navier-

Stokes equations through order of magnitude analysis. Rasmussen (27) derives the axi-

symmetric, steady state, compressible boundary layer equations in some detail, with the

final result U .ing:

Continuity: ar 'pu + 8r'pv -o (5-1)ax ay

Where m is 0 for planar two-dimensional flow and 1 for axisymmetric flow The only

difference between the planar equations and the axisymmetric equations is the r' term

in the continuity equation.

X-Momentum: pu.H + p - (5

Y-Momentum: _P= 0 (5-3)ay

Energy pu + Pvah a (k aTJ + ud4P,+P(-U (5-4)

White (36) derives integral relations for the compressible boundary layer using

integral relations similar to those used by Karman. Rasmussen (27) derives a similar

relation to that in White.

The integral momentum equation is
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& +0 dln(purm) +( +(). nu) d C (5-5)

and the integral enthalpy equation is

d.D + in(purm) + dln(J _ J)] = St (5-6)

Where J,, and J, are total enthalpy at the wall and boundary layer edge, respectively, and

St is Stanton number. The terms 8, displacement thickness, and 0, momentum

thickness, are given by

-k u . (5-7)

•peU

and St is defined as

St = q. (5-8)
P.U,(J, - J)

Equations (5-5) and (5-6) can be related through Reynold's analogy. If Prandtl

number, Pr, is equal to one, Reynolds analogy states that the left hand sides of equations

(5-5) and (5-6) are equal, so that heat transfer is directly related to skin friction. If Pr

is not equal to one, Reynold's analogy can be written as (3)
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S C C2 (5-9)
2Pr2 Pr"•

For analysis of the stagnation region near the nose, a similarity solution is useful. Such

an analysis can be accomplished through the use of the Levy-Lees transformation.

Anderson (3) provides a transformation to the Levy-Lees coordinates, ý and iT:

x

fp. u dx (5-10)
0

q1 J!.efp dy (-1

Anderson (3) derives the similarity form of the boundary layer momentum and

energy equations:

X-Momentum:

U ( + fl g U - _/2 + 2 [ Of I. (5-12)

Y-Momentum:

dp 0  (5-13)

and Energy:
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where

h
- h (5-15)

g = U (5-16)

and

c= p11 (5-17)

A computer code (18) which numerically implements the similarity solution,

described in equations (5-12) through (5-14), for the stagnation region of hypersonic

flow around a blunt ended cylinder was used to compare the flow in the stagnation

region to an analytic solution. The following two figures are plots of data produced by

the similarity program. Figure 5-1 graphically displays the extreme gradients typical of

hypersonic flow. The flow is slowed from 1735 feet/second to 0 feet/second in the

space of less than half an inch. The edge velocity is assumed, here, to be equal to that

just behind the normal shock.

The similarity solution does not match particularly well with the data taken from

the computational solution (Figure 4-31). This is primarily due to poor flow resolution

in the stagnation region. A finer computational grid in the stagnation region should
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Figure 5-1, Stagnation Line Plot of Velocity and g

correct the difficulty. Hayes and Probstein (19) predict that the ratio of shock stand-off

distance to nose radius as 0.104, for M.=10 and y = 1.4. This matches well with what

was observed in the computational solution, but also means that due to the very small

shock stand-off distance, the stagnation region will occupy a large portion of the shock

layer.

5.1.1 Hypersonic Viscous Interaction

Anderson (3) states that the boundary layer thickness in a viscous, hypersonic

flow over a flat plate is proportional to Mach number squared divided by the square root

of Reynolds number. He gives the relation:
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0C - - (5-18)

The waverider, locally, resembles a flat plate, particularly on the freestream

surface which is parallel to the freestream. The main difficulty in applying equation

(5-18) to the compression surface is its the angle of attack. However, since equation

(5-18) is not an equality but a proportionality, it should still hold, though the constant

of proportionality will be different than for a flat plate at a zero degree angle of attack.

The rapid boundary layer growth and the resulting thickness of the boundary

layer are the basic drivers of hypersonic viscous interaction. Anderson (3) goes on to

derive the equation

P = 1 + alx (5-19)

for strong viscous interactions, where a, is a constant. Note that equation (5-19)

indicates that the pressure ratio, p, /pa, is dependent only on X, and that the pressure

ratio is linear with X.

For a weak hypersonic viscous interaction Anderson (3) derives

P. = 1 + b1x (5-20)

p.

where b, is a constant. Again, the pressure ratio varies linearly with X. Anderson (3)

provides numerical values for the constants a, and b, for hypersonic flow over both an

adiabatic wall and a cold wall flat plate. Equations (5-19) and (5-20) become:
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P 1 + 0.5X (strong interaction)
P.. 

(5-21)

P = i + 0.078X (weak interaction)

for the cold wall case. With the viscous interaction parameter X > 3.0, strong interaction

is generally taken to occur, and weak interaction for X < 3.0 (3). Note that the strong

interaction case varies much more rapidly with X than does the weak interaction case

because the constant multiplying X is an order of magnitude larger for the strong

interaction case than for the weak interaction case.

The definition of X in the above equations is:

x . (5-22)

where C is given by

_ PW P. (5-23)
P. P.

5.1.2 Application of the Boundary Layer Equations

The above equations were applied to the waverider flying at Mach 10 and c =

0 at an altitude of 100,000 feet. Figure 5-2 shows the estimated variation of X with

distance from the waverider's nose. For purposes of calculating X in Figure 5-2 the

following assumptions: u. = .9u, = 8910 feet/second, T, = 1469 *Rankine, and C = 1.25

were made. Sutherland's formula was used to calculate p., and Re was calculated using
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the value of the variables at the boundary layer's edge.

5
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Figure 5-2, Chi vs X

Applying X as shown in Figure 5-2 to equation (5-21), the local pressure ratio

is calculated. The pressure ratio distribution over x, calculated both from the

computational data and from the viscous interaction equations given above, is shown in

Figure 5-3 (compression surface) and in Figure 5-4 (freestream surface).
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Appropriate flow variables, particularly p,, were extracted from the computational

solution for use in the calculation of X.

As can be seen in both figures, the match is not particularly good. The initial

trend of a steep decrease in pressure ratio is correct, though the values don't match. The

numerical results are initially greater than the theoretic prediction. The steep pressure

rise behind the normal shock accounts for the displacement of the computational

pressure ratio above the predicted ratio. The sudden turn and then rise in the

computationally calculated pressure ratio is due to the flow expanding past freestream

conditions around the blunt nose, and then trying to recover to the freestream pressure,

as described earlier, in Chapter 4.

5.2 Skin Friction and Heat Transfer

Incompressible flow over a flat plate produces the following skin friction and

heat transfer coefficients (36) derived from similarity solutions:

0.664
Cf 066 (5-24)

and

St = 0,332
0322 (5-25)

The parameters Re and Pr are based on the flow properties at the edge of the boundary

layer.
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The reference temperature method uses the exact same form for the skin friction

and heat transfer coefficients as is found in equations (5-24) and (5-25), except that Re

and Pr are now calculated using a reference temperature, T, given by Anderson (3) as:

T =1 + .032M + 0.58 (5-26)

Thus, Re and Pr can be written as:

Re.* = p*ux Pr =- c/ (5-27)

The values in equation (5-27) are then substituted directly into equations (5-24)

and (5-25). The reference values used in equation (5-27) were taken from the just

behind the shock at about the midpoint of the waverider, to ensure that the reference

values used were indeed representative of the conditions at the edge of the boundary

layer.

The plot of skin friction coefficient versus x (feet) in Figure 5-5 shows results

very similar to those returned by the computational solution, shown in Figure 5-6. The

agreement between the two solutions is good. Both figures show precipitous drop in

both heat transfer and skin friction as distance from the nose increases. Both plots

asymptotically approach a value of 0.00004 for skin friction coefficient and .00008 for

Stanton number. Agreement with Reynold's analogy in the numerical solution is also

good, Stanton number being a little less than twice the value of the skin friction

coefficient.
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5.3 Lift and Drag

The lift and drag forces are calculated by integration of the pressure and shear

stresses over the body. White (36) gives the control volume equation:

fdv. + dF.F = + kpdVol (5-28)

where F, is the surface force and Fb is the body force. The total force, F, is then

broken into lift and drag components by simply taking lift as the component of F in the

negative Y direction (see Figure 1-2) and drag as the component in the direction of the

freestream flow. A program, written by Gaitonde, which analyzes the data produced by

the CFD solver further breaks the lift and drag components into viscous and pressure

components. Table 5-1 lists the forces for the viscous and inviscid cases normalized to

the force in the X direction.

Table 5-1, Force Data

Parameter Viscous Flow Value Inviscid Flow Value

Total Lift, lbs 223198 195805

Total Drag, lbs 38853 23999

Pressure Lift, lbs 223639 195805

Pressure Drag, lbs 27708 23999

Viscous Lift, lbs -441 0

Viscous Drag, lbs 11145 0

P.m, psf 149.938 142.593

P.,' psf 23.276 23.276

RCL 193,043,000

L/D 5.745 8.159
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The flight conditions outlined in Table 4-1 were used in the calculation of both the

viscous and inviscid cases.

As can be seen, the viscous terms contribute significantly to the drag on the

vehicle, almost 30% of the drag being due to viscosity. The viscous effects increase

lift by 12% as compared to the inviscid case. The increase in lift is due to the slightly

greater pressure on the compression surface, caused by the hypersonic-boundary layer

interaction present in the viscous flow solution.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Mach 10 Navier-Stokes flow over a conically derived hypersonic waverider was

computationally solved on the OSC CRAY Y-MP using WL/FIM's implicit flux

splitting code. The code performed well, its finite volume formulation enhancing the

practical stability, despite some very skewed cell geometries.

Returning to the objectives stated in chapter I, the following conclusions were

reached:

Blunting the nose and leading edges had little effect on results such as lift to

drag ratio, though it did significantly effect the flow structure, particularly near the nose

of the vehicle.

Generating the three dimensional grid was a major effort, though made

considerably simpler by the GRIDGEN package. The use of the 0-grid allowed for

good resolution near the waverider's leading edges, allowing the capturing of flow

expansion and shock standoff.

The three dimensional implicit flux splitting algorithm performed extremely well.

The finite volume approach the code used made for an extremely robust algorithm, able

to handle regions with highly skewed cells, and cells with very small volumes. The

code produced results predicted by hypersonic theory, with deviations attributable to

numerical error in either the waverider model or in the numerical solution procedure.

The implicit version of the code required fewer iterations to reach convergence than did
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the explicit version. The explicit version, however, required less computation time per

iteration and less memory overhead. The tradeoffs between the versions of the code

favored the implicit version. While each iteration for the implicit version required

approximately twice as much computer time, the implicit version required approximately

one quarter the number of iterations. If memory becomes a limiting factor, however,

the explicit version of the code has a definite advantage.

The blunted nose and leading edges led to a small, but strong, normal shock

slightly displaced from the waverider. The pressure rise through the normal shock, and

the expansion around the shoulder of the waverider caused the flow to differ

significantly from the results predicted by the viscous interaction equations given by

Anderson (3), making the comparison of little value. The structure of the shock waves

was simple and held only one minor surprise, the X shaped structure at the leading edge

on the baseplane, formed by an expansion around the leading edge meeting the high

pressure on the compression surface. Elsewhere, the shock was detached from the

waverider by a small distance.

Comparison of the stagnation region near the nose to a similarity solution for

flow over a similar geometry yielded good results. The trends matched well, and the

values computed were close to those predicted. Differences can easily be attributed to

differences in the geometry, and highlight the need for a finer grid in the stagnation

region.

The computed LID ratio compared favorably with results for similar vehicles.

Comparing the result of 5.75 obtained in this research to a plot of LID such as that in
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Anderson (5), this result can be seen to be quite near the predicted value, and the results

obtained by others.

6.2 Recommendations

This thesis, along with Stecklein's (28), will provide an excellent basis from

which to continue waverider research. The following recommendations are the result

of careful consideration of the research and conclusions reached in the course of this

thesis.

The use of a taut cubic spline, or radius method to blunt the nose and leading edge is

recommended. Such a method will provide a smoother model geometry at the nose and

leading edges than that used here. Refining the computational grid is necessary,

particularly in the stagnation region near the waverider's nose. Some particular goals

to pursue include reducing the number of cells in the grid without losing the flow

resolution, and reducing the cell skewness, particularly near the leading edges.

This research neglected the real gas effects, such as dissociation, chemical reaction, and

ionization. Murthy (23), and or Anderson (3), describe these effects the influence they

have on the flow, but the most noticeable effects are a reduction in the boundary layer

thickness and in aerodynamic heating. Turbulence should be accounted for in further

studies. The Reynolds number indicates that turbulence could play a major role in the

flow over the waverider.

Flight at off-design conditions should be examined. Waveriders are very

sensitive to off-design conditions, and pay heavy penalties in terms of efficiency when
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flying at other than their design point. Particularly, waverider performance over a range

of Mach numbers from 0 to somewhat above the design Mach number should be

investigated, as should performance for a range of angles of attack and yaw. Waverider

performance over a range of altitudes, perhaps a reentry trajectory, should be

investigated.
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APPENDIX A: DERIVATION OF THE WAVERIDER EQUATIONS

The waverider equations are well known, as is their derivation. However, most

derivations leave large steps to the reader's imagination and frustration. Therefor, the

equations are derived here in some detail. The derivations came primarily from

Rasmussen (25 and 26) and Stecklein (28).

The conically derived waverider equations come from the Taylor-MacColl

equation and it's hypersonic small disturbance theory form and results.

- 2_V2_-V-- j

2±d (A-1)

S+ rCoto + d9] V + - 2-=JJ-°

Equation (A-i) is the Taylor-MacColl equation, which produces the HSDT form:

S+ otO r + 2 V = 0 (A-2)C902 M r

Equation (A-2) has analytic solutions for u and v (V, and V8 respectively),

which, using 2nd order accurate Taylor series expansion, are:
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2 + In (A-3)

The streamlines between the shock and the cone (i.e. within the shock layer) are

given by

Vx ds = 0 (A-4)

where ds is differential length along a streamline, and V is the velocity vector. The

equation says that the velocity vector is parallel to the streamline.

Expanding (A-4) results in only one component, that in the ý direction:

detlu v =(urdO - vdr)d,=o (A-5)

[dr rdO

Rearranging (A-5) by getting rid of the unit vector and separating the variables

you get:

dr = u (A-6)

r V

Further assuming that usV® and is furthermore constant within the shock layer,

(A-6) can be integrated (after substituting for v from (A-3)) from the shock to a point

of interest:
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r 0

f = 1,0all (A-7)

(A-7) can be solved to become:

lnr - ir 5 =.'In I12 - 82 1 - -'In 102 - 821 (A-8)

which can be rearranged by raising both sides to the e to:

r 0 - 82 (A-9)r-- 02 _82

Now, the distance from the centerline of the cone to any given point is rsinO or,

for small angles, rO. The (arbitrary) cylindrical freestream surface can be expressed by:

r sinO =AO) (A-10)

wheref(ý) is arbitrary. Applying the small angle approximation, the freestream surface

which intersects the shock at r, is given by:

rM = r,(l)j (A-11)

In the base plane we non-dimensionalize by 18, the radius of the generating cone

in the base plane. This gives R•, = 0.,/8. If (A-11) is evaluated in the base plane it

yields:

r0= 'tb($) = r ()J1 (A-12)

Defining a as J3/8 (A-12) can be rearranged to get:
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r(0) = -: ( -) (A-13)

Now, Rb(ý)=10.b(#/8=0,b()8, or Ob=SR1 (ý). Evaluating (A-9) in the

baseplane, with (A-13) substituted in for r,(5 ), yields:

-a(A-14)

Squaring both sides, rearranging slightly, and substituting in for 0b:

R,- 82 = R•(ý) 2 - a2  (A-15)

A little algebra gives the final result:

(RJW= 1 + C }R()2 (A-16)

Note that Rb is an arbitrary function, usually (and in this thesis) taken from the

transformation of the polynomial:

X=Ro +Ay2 +BY4 +Cy 6  (A-17)
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"APPENDIX B: DIVIDED DIFFERENCES

E I 1[pi [,]P,,_ I ]PA ... [,]Pi

si

,r•+ g(t,+,) ([,______ _l_____-______/______

$i+1

"Ti+1 g(.Ti+,)

Table B-1, Divided Difference Table

The square brackets, [ ], indicate a divided difference of order i-I. The first

divided difference is given in Eqn (B-2) below.

f[xo,x1 ] = A A (B-2)

The second divided difference incorporates the first:

f[XoX1 ,X2] = f[Rx'x 2] - f[x°,xt] (B-2)

x2 - xo

Similarly for the third divided difference.

The values given in Table B-I are used to derive the coefficients in Eqn (2-11).
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APPENDIX C: PROGRAM WAVERIDER
c
c 5 Sep 92:
c This attempt will now proceed as follows:
c Both freestream and compression surfaces will be extended as y=y(z).
c The slopes of each will be clamped at -3 for the compression and +3
c for the freestream surfaces, at the boundary point x5,y5. However,
c the boundary point value will not actually be written to the file,
c thus blunting the sharp comer that would otherwise result.
c The other major change is that the first plane, the i=1 plane,
c will not be printed to the output file. Instead, 13G-VIRGO will be
c used to generate the cubic spline on the nose. This will hopefully
c eliminate singularity problems near the nose.
c Note also that the slopes may be input, as can the separation
c distance and the number of points to use in the spline. Good results
c were obtained using 3cm in y, 1cm in z, slopes of +-4, and 15 points.
c
c 23 Sep 92:
c The program currently uses linear interpolation to build the
c nose of the waverider.
c

PROGRAM WVRIDR

C PRODUCES MULTIPLE 2-D CROSSPLANE SURFACES OF A
C PARABOLIC HYPERSONIC WAVERIDER

IMPLICIT REAL*8 (A-HO-Z)
INTEGER MCAP,NCAPINCRBNDS
REAL*8 MACH,G,D,PHIL,I,SIGMARo,Ao,XSIGYSIGPI,

* Iw, rzRADZovL(90),X(90,91),Y(90,91),Z(90,91)

CHARACTER*21 OUTPUT

COMMON MCAPNCAPPI,INCRBNDSPHIL

C SET CONSTANTS

PI = 4.dO*DATAN(1.dO)
RAD = P1/180.

C CONSTANTS WHICH EFFECT THE GEOMETRY OF THE WAVERIDER
MACH = 10.0
D= 5.5 *RAD
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PHIL = 50.0 * RAfl
1 = 88.41675
T`YPE = 1

C BASIC CALCULATIONS NEEDED FOR WAVERIDER CROSSPLAXNE
C DEVELOPMENT

G= 1.4
MCAP = 45
NCAP 90

INCR =(2*MCAP) + I
BNDS I

OUTPUT = '3dsurf'

SIGMA =(((3+1.0)/2.0 +1 .0/((MACH*D)* *2))* *0.5

XSIG = SIGMA*COS(PHIL)
YSIG = SIGMA*SIN(PHIL)

C VALUE OF TYPE DEFINES TYPE OF PARABOLIC WAVERIDER.
DEFAULT
C IS SET TO TANGENT PARABOLIC

IF (TYPE.EQO0) THEN
Ro = XSIG/2.0
Ao =Ro/(YSIG)**2

ELSE
Ro = 0.75*XSIG
Ao = 0.25*XSIG/(YSIG)**2

END IF

1w =1*(10 - Ro/SIGMA)
rz =1*QRo/SIGMA)

C GET INPUT DATA
C CALL INPUT(MACKD~PHL,1,ITYPE,MCAPNCAP,OUTPUT)

C COMPUTE WAVERIDER GEOMETRY
CALL WAVEBODY(Ro,Ao,1,P,SIGMA,rz~RnRcbZovL,

* ~X,YZ)
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C CALL OUTDAT TO WRITE TO A DATA FILE
CALL OUTDAT(RinRcb,lwI,MACH,DZovL,

* X,YZ)

END
C END OF MAIN PROGRAM
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SUBROUTINE WAVEBODY(Ro,AI,D,SIGMA,rzRin,Rcb,
* ZovL,XY.,Z)

C WAVEBODY DEFINES THE X,Y,& Z COORDINATES OF CROSSPLANES,
C OF THE WAVERIDER CONFIGURATION

IMPLICIT REAL*8 (A-HKO-Z)
INTEGER I,JKINCRMN,BNDS
REAL*8 PFH(90),PHIZ(90),Rn~rz~rs(90),ZovL(90),

* Rcb,Xin(90,60),Yin(90,60),Zin(90,60),
* Xcb(90,60),Ycb(90,60),Zcb(90,60),ARo,l,
* SlGMA,testX(90,9 1),Y(90,9 1),
* Z(90,91),D,DELTA(90),A1 ,PLANE(90),AOPROG

COMMON MCAPNCAP,PI,INCRBNDS,PHIL

C SET INITIAL VALUE OF PHI TO COINCIDE WITH THE
C NUMBER OF CROSSPLANES: (PFHLL/RAD)INCAP

AO =.001
PfH(1) = 0.0*PI/180.
PROG = PHIL-PHI(l)
CALL GEOM(PROG,,AO,NCAP- 1 PLANE)
DO N = 2,NCAP
PfH(N) = PIHI(N-l) + PLANE(NCAP+1I-N)

END DO
PfH(NCAP) = PHIL

scale = 1*D

DO 10 I = 1,NCAP

C CORRECT FOR ERRORS IN MACHINE ZERO

test = ((COS(PFH(I)))**2-4.0*Ro
* *A*(SIN(PHI(I)))**2)

IF(test.LE.0.0)TIHEN
test = 0.0

END IF

rs(I) = (I/SIGMA)*(2. *Ro)/(COS(PHI(I))+(test)* *0.5)
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ZovL(I) = (rs(I)-rz)/(l*( 1.0-Ro/SIGMlA))

C Al DETERMINES THE INITIAL PACKING INCREMENT OF BODY POINTS
C FROM THE LEADING EDGE OUTWARD.

Al =.0005

C COMPUTE THE PHI INCREMENTS FOR BODY POINT GENERATION
STEP = PFH(I)

CALL GEOM (STEPA1,MCAPDELTA)

PHIZ(l) = 0.0
DO 15 J = 2,MCAP+ 1

15 PHIZ(J) = PHIZ(J-l) + DELTA(MCAP+2-J)
PHIZ(MCAP+ 1) = P111(I)

DO 20 J = l,MCAP+l
K = (I-1)*(MCAP+1)+J
if (k eq. 1) then

Rinl = ((2.* Ro)/(COS(PHIZ(J))+((COS(PHIZ(J)))**2
* - 4.*Ro*A*(SIN(P141(J)))* *2) **0.5))

end if

Rin =((2.* Ro)/(COS(PHIZ(J))+((COS(PHIZ(J)))**2
* - 4.*Ro*A*(SIN(PfIIZ(J)))**2)**O 5))

Rcb =(((ZovL(I)*( I.0-Ro/SIGMA)+Ro/SIGMA)*'*2 +
* (SIGMA**2 - l.0)*Rin**2/SIGMA**2)**0.5)

C CALCULATE THE XY,& Z VALUES FOR EACH CROSSPLANE.
C Z IS A CONSTANT FOR EACH CROSSPLANE

XinQI,J) =Rin*COS(PHIZ(J))
Yin(IJ) = Rin*SIN(PFH(J))
Zin(IJ) = rs(I)

Xcb(I,J) = Rcb*COS(PHIZQJ))
YcbQI,J) = Rcb*SIN(PHIZ(J))
ZcbQ),) = rs~Q)

20 CONTINUE
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10 CONTINUE

C COMBINE THE Y, Y, & Z VALUES OF THE FREESTREAM AND
C COMPRESSION SURFACES INTO ONE ARRAY

DO 30 1= 1, NCAP
DO 40 J = 1,MCAP

Y(I,J) = Xin(I,J')*scale - Rini
Z(I,J) = Yin(IJ)*scale
X(I,J) = Zin(IJ) - (1*Ro/SIGMA)

40 CONTINUE
30 CONTINUE

DO 50 M =1,NCAP

DO 60 N =MCAP+1,INCR

Y(M,N) =Xcb(M,(INCR+1)-N)*scale - Rini
Z(MN) =Ycb(M,(INCR+1)-N)*scale

X(M,N) =Zcb(M,(INCR+ 1)-N) - (1*Ro/SIGMA)
60 CONTINUE

50 CONTINUE

RETURN

END
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SUBROUTINE OUTDAT(RinRcb,lwIl,MACKDZovL,X(YZ)
C OUTPUT SENDS RESULTS TO AN OUTPUT FILE
c This subroutine also adds the spline fit required for a
c viscous waverider.
C

INTEGER I,JLNCRBNDS,mm,dim, ibcbeg, ibcl, nose
REAL*8 X(90,9 1),Y(90,91I),Z(90,9 1),IwMACHDRn,Rcb,ZovL(90)
REAL*8 h,xl ,x2,x3,x4,yly2,y3,y4,slope,displ
REAL*8 xsp(2O), ysp(2O), tau(2), c(4,2), sep, xsep
REAL.*8 xnose(20),ynose(40),znose(20),yspcb(20)

COMMON MCAPNCAPPI,1NCRBNDSPHIL

OPEN(UN1T=1 2,file='visc.dat',form='formatted')
OPEN(UNIT=1 4,file='curve.dat',form=-'formatted')

c write( 12,*) 'NETWORK=WAVERIDER',mcap*2+1I9,ncap,' NEW'

Print*, 'Enter distance (meters) to separate surfaces'
Read*, sep

xsep = 0.5 * sep
y 1=y(1 ,1)

C

c Split the two surfaces by 1 cm. and put the waverider nose at Y0O

C
Do 10 j=1,ncap
Do 20 i=mcap+1,mcap*2+1

20 oninue ,)+e
10 continue

do 15 j1,ncap
do 25 i1l,mcap*2+1

25 continue
15 continue

nose=1
xsep--xsep/3 .0

100 format(3(2xE15.8))
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444 format(8(2x~el 5.8),2x~i3)
445 format(5(2x~e15.8),2x,'Xplane = ',i3)
446 format(Ix'first row is xl-x5, second is yl-y5')

Print*,'Enter slope for spline ends'
read*, slope

Print*,'Enter number of points for spline'
read*, dim

write(12,*) "title="
write(12,*) 'variables=x~yz'
write(1 2,222) mcap*2- 1+dim*2,ncap+dim- 1

c write(12,222) mcap*2-1+dim*2
222 forrnat(lx,'zone t--" ",i=' ,i4,', j=',i4,', f--point')

c222 format(lx,'zone t--" "i=' ,i4,', f--point')

C

c Set up to calculate the splines for the blunted nose
C

zi =sep
z2=z(2,mcap+1) + xsep
Z5=0.0
y2=y(2,l)
y l=y( 1,)
y2=y( 2,l)
y4=y(2,mcap*2+ 1)
y3=y(l ,mcap*2+1 )+(y4-y(l ,mcap*2+1I))/z2*zl

x2=x(2,I)
x5=xl -xsep
y5=(yl +y3)*0. 5

C
C
c Write out the nose coordinates
C
C

Do 35 i=1,mcap*2+dim*2-1
write(12,100) xl~y5,z5

35 continue
C
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c

c Calculate the X-Y plane splines
C

tau(1)=-x5
tau(2)=xl
c(1,1)=-y5
C(1,2)-y I
c(2,1I)- 1.0*slope
c(2,2)0O.0
ncub=-2
ibcl=l

call cubspl. (tau~c,ncub,ibcl,ibcl)

h = (xl-x5)/FLOAT(dim)

Do 30 ii~l,dim
xnose(ii) = x5 + h*FLOAT(ii)
xt = h*FLOAT(ii)
ynose(ii) = c(11l) + xt*(c(2,1)+xt*(c(3,1)+xt*c(4,1)

& /3.0)/2.0)
30 continue

c(2,1 )=slope

c(2,2)=(y3 -y 1)/(x2-xl)

call cubspl (tau,c,ncub,ibcl ,ibcl)

Do 40 ii=1,dim
xt = h*FLOAT(ii)
ynose(ii+dim) =c( , 1) + xt*(c(2, 1)+xt*(c(3,1I)+xt*c(4, 1)

& /3.0)/2.0)
40 continue
c
c

c Do the X-Z Plane spline
c
c

c( 1,1 )=z5
c(1,2)=zl
c(2, 1)2. 0*slope
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c(2,2)=(z2-zl )/(x2-x 1)

call cubspl (tau,cncub,ibcl ,ibcl)

Do 50 ii1 ,dim
xt = h*FLOAT(ii)
znose(ii) = c(1,1) + xt*(c(2,1)+xt*(c(3,1)+xt*c(4,1)

& /3.0)/2.0)
50 continue

C

C

c Now, do the linear interpolation to fill in the new
c Y-Z planes with X coordinates given by xnose(i)
c First, though, we need to get the spline fit for

c the Y-Z plane at X(nose).
c
c

nose = 2
yl~y(nose,mcap+l) - sep
y2=y(nose,mcap)
y3=y(nose,mcap+ 1)
y4=y(nose,mcap+2)
y5=(y3+y 1)*.5
xl=z(nose,mcap+ 1)
x2=z(nose,mcap)
x3=z(nose,mcap+ 1)
x4=z(nose,mcap+2)
x5-xlI+xsep
tau(1) = xI
tau(2) = x5
c(1,1) = yI
c(1, 2 ) =y5
c(2,I) = (yl-y2)/(xl-x2)
c(2,2) =slope
ncub 2
ibclI=I

call cubspi (tau~c,ncub,ibcl,ibcl)

h = (x5-xl)/FLOAT(dim)

Do 60 ii=1,dim
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xsp(ii) = xI + h4'FLOAT(ii)
4t = h*FLOAT(ii)
ysp(ii) =c(1,1) + xt*(c(2,1)+xt*(c(3,1)+xt*c(4,I)

& /3.0)/2.0)
60 continue

tau(I) = x3
tau(2) = x5
c(1,1) = y3
c(1,2) =y5
c(2,1) = (y3-y4)/(x3-x4)
c(2,2) = 1.0*slope
ncub =2

ibcl=I

call cubspl (tau,c,ncub,ibcl,ibcl)

h =(x5-x3)IFLOAT(dim)

Do 70 ii=1,dim
xsp(ii) = x3 + h*FLOAT(ii)
xt = h*FLOAT(ii)
yspcb(ii) = c( 1,1) + xt*(c(2,1I)+xt*(c(3, 1)+xt*c(4, 1)

& /3.0)12.0)
70 continue
c
c
c Now start the interpolation
c
c

Do 80 j-2,dim-1
c write(12,*) 'zone'
c
c
c The freestreamn surface
c
c

Do 90 i=1,mcap
yI (y5-ynose(j))/(y5-y(nose,1))

& *(y(nose,i)..y(nose,1)) + ynoseoj)
zl=(znose(j)/(z(nose,mcap+1 )))*z(nose,i)
write(12,100) xnosecj),ylI,zl

90 continue
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c

c

c The freestreamn spline
c

c

Do 1 10 i=1I,dim-1I
yl=(y5-ynose(j))/(y5-y(nose, 1))

& *(ysp(i)-y(nose,l)) + ynose(j)
z1-(moseoj)/(z(nose,mcap+l1)))*xsp(i)
write( 12,100) xnoseoj),ylI,zl

110 continue
C

C

c The compression spline
C

C

Do 120 i=dim-1,1,-1
y 1=ynose(j+dim)-(ynose(j+dim)-y5)/(y(nose,mcap*2+ l)-y5)

& *(y(nose,mcap*2+1I)-yspcb(i))
zl=(znoseoj)/(z(nose,mcap+1 )))*xsp(i)
write(1 2,100) xnoseoj),y 1,zl1

120 continue
C

C

c The compression surface
C

C

Do 130 i=micap+1,2*mcap+1
y 1=ynose(j+dim)-(ynose(j+dim)-y5)/(y(nose,mcap*2+ 1)-y5)

& *(yQnos,mcap*2+ 1)-y(nose,i))
zl=(znoscOj)/(z(nose,mcap+1 )))* z(nose,i)
write(12,100) xnoseoj),y 1,zl

130 continue
80 continue
C

c

c Now do the main portion of the waverider
C

C

write(6,*) 'Nose starts at plane',nose

Do 140 mnn=nose,ncap,
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c write(12,*) 'zone'

print*, 'Loop number',mm

yl=y(mmn,mcap+1) - sep
y2=y(mm,mcap)
y3=y(mm,mcap+ 1)
y4=y(mm,mcap+2)
y5=(y3+y 1)*.5
xl =z(mm,mcap+ 1)
x2=z(mm,mcap)
x3=z(mm,mcap+ 1)
x4--z(mm,mcap+2)
x5=xl +xsep
tau(1) = xI
tau(2) = x5
c(1,l) =yl
c(1,2) =y5
c(2,I) = (yl-y2)/(xl-x2)
c(2,2) =slope
ncub =2
ibcl=I

call cubspl (tau~c,ncub,ibcl,ibcl)

h = (x5-xl)IFLOAT(dim)

Do 150 ii~l,dim-1
xsp(ii) = xl + h*FLOAT(ii)
xt =h*FLOAT(ii)
ysp(ii) = c(1,1) + xt*(c(2,1)+xt*(c(3,1)+xt*c(4,1)

& /3 .0)/2.0)
150 continue

Do 160 ii=1,mcap
write(12,1 00) x(mm,ii),y(mmnii),z(mmnii)

160 Continue

Do 170 ii=1,dim-l
'write(12,1 00) x(mrn,ii),ysp(ii),xsp(ii)

170 COntinue

tau(l) = x3
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tau(2) = x5
c(1,1) = y3
c(1,2) = y
c(2,1) = (y3-y4)/(x3-x4)
c(2,2) = -I.0*slope
ncub =2

ibc=11

call cubspl (tau~c,ncub,ibcl1,ibc 1)

h = (x5-x3)IFLOAT(dim)

Do 180 ii~l,dim-1
xsp(ii) = 03 + h*FLOAT(ii)
xt = h*FLOAT(ii)
ysp(ii) = c(1,1) + xt*(c(2,1)+xt*(c(3,1)+xt*c(4,1)

& /3.0)12.0)
180 continue

Do 190 ii=dim-1,1,-1
write( 12,100) x(mrn,ii),ysp(ii),xsp(ii)

190 COntinue

Do 200 ii=mcap+1,mcap*2+1
write(12,1 00) x(rnm,ii),y(mm,ii),z(mm,ii)

200 Continue
140 continue

111 format(lx,3(e15.8,2x),'Free Stream Surface')
112 format(lx,3(el 5.8,2x),' Compression Surface')
113 format(5x,'X',17x,'Y',17x,'Z',17x,'Plane :',14)
C

RETURN
END
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SUBROUTINE GEOM (sum,al,num,astep)

IMPLICIT REAL*8 (a-h~o-z)
REAL* 8 astep(num),xsumtfevalijac,dr,rinit,

* ~rdif~fstop,rmax

rinit = L.OW
fstop = 0.OO0l0dO
icount = 0
imax = 10
rmax = l.5d0
rdif = 0.OldO
xsum =sum/al

I rinit =rinit + rdif
dr =rinit
icount = 0
IF (rinit.gt.rmax) THEN

WAUTE (*,*) ' rinit exceeded rmax'
GO TO 99
END IF

10 CONTINUE
feval = L.OW
DO 20 i=l,num-l

20 feval = feval + dr**j
feval = feval - xsum
IF (ABS(feval).It.fstop) GO TO 89
jac = 1.OdO
DO 30 i=l,num-2

30 jac = jac + (i+l)*dr**i
dr = dr - feval/jac
icount = icount + I
IF (icount.eq.imax) THEN

GO TO I
ELSE

GO TO 10
END IF

89 astep(l) = al
r = dr
DO 40 i=2,num

40 astep(i) = a1*r**(i-1)
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99 RETURN
END

SUBROUTINE CUBSPL (TAU, C, N, IBCBEG, IBCEND)
C * INPUT ******** ****
C N=Number of data points. Assumed to be >=2.
c (tau(i), c(I,i), i=l,n)=Abcissa and ordinates of the
c data points. Tau is assumed to be strictly increasing.
c IBCBEG, IBCEND = boundary condition indicators and
c c(2,1), c(2,n) = boundary condition information, specifically,
c IBCBEG--O means no boundary condition at tau)l) is given.
c In this case, the not-a-knot condition is used, i.e. the
c jump in the third derivative across tau(2) is forced to
c 0, thus the first and second cubic polynomial pieces
c are made to coincide.
c IBCBEG=1 means that the slope at tau(1) is made to equal
c to c(2,1), supplied by input.
c IBCBEG=-2 means that the second derivative at tau(1) is
c made equal to c(2,1), supplied by input.
c IBCEND=0, 1, or 2 has analogous meaning concerning the
c boundary condition at tau(n), with the additional
c information taken from c(2,n).
C * OUTPUT
c cj,i), j=l, 4; I=l, L (L=N-1) = the polynomial coeffiecients
c of the cubic interpolating spline with the interior knots (or
c joints) tau(2), tau(n-1). Precisely, in the interval (tau(I),
c tau(I+1)), the spline F is given by
c F(x)=c(I,1)+h*(c(2,I)+h*(c(3,I)+h*c(4,I)/3)/2)
c where h-x-tau(I). The function program *PPVALU* may be
c used to evaluate F or its derivatives from tau, c, L and K=4
C

INTEGER IBCBEG, IBCEND,NI,J,L,M
REAL*8 C(4,N),TAU(N),DIVDF 1,DIVDF3,DTAU,G

C
L =N-1

C
DO 10 M=2,N

C(3,M) = TAU(M) - TAU(M-1)
C(4,M) = (C(1,M") - C(1,M-I))/C(3,M0

10 CONTINUE
C

IF (IBCBEG-1) 11,15,16
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11 IF (N .GT.2) GOTO 12
C

C(4,1) = 1.0
C(3,1) = 1.0
C(2,1) = 2.0*C(4,2)
GOTO 25

12 C(4,1) =C(3,3)
C(3,1I) =C(3,2) + C(3,3)
C(2, 1) =((C(3,2)+2.0*C(3 , 1))*C(4,2)* C(3 ,3 )+C(3 ,2)* *2 *C(4,3))

& /C(3,1)
GOTO 19

C
15 C(4,1) =1.0

C(3,1) =0.0
GOTO 18

C
16 C(4,1)= 2.0

C(3, 1) =1.0
C(2,1) =3 .0*C(4,2)-C(3,2)/2.0*C(2,1)

18 IF (N .EQ. 2) GOTO 25
C
19 DO 20 M=2,L

G = -C(3,M+1)/C(4,M-1)
C(2,M) = G*C(2,M- 1)+3 .0*(C(3,M)*C(4,M+ 1)+C(3 ,M+ I)*C(4,M+ 1))
C(4,M) =G*C(3,M- I)+2.0*(C(3,M)+C(3 ,M+ 1))

20 CONTINUE
C

IF (IBCEND -1) 21,30,24
21 IF (N.EQ. 3 .AND. IBCBEG .EQ. 0) GOTO 22
C

G = C(3,N-1)+C(3,N)
C(2,N) = ((C(3,N)+2.0*G)*C(4,N)*C(3,N-1)

& +C(3,N)* *2*(C(1 N- 1)-C( 1,N-2))/C(3 ,N- 1))/G
G = -G/C(4,N-1)
C(4,N) = C(3,N-1)
GOTO 29

C
22 C(2,N) =2.0*C(4,N)

C(4,N) =1.0

GOTO 28
C
24 C(2,N) = 3.0*C(4,N)+C(3,N)/2.0*C(2,N)
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C(4,N) = 2.0
GOTO 28

25 IF (LBCEND - 1) 26,30,24
26 IF (IBCBEGi.GT. 0) GOTO 22
C

C(2,N) = C(4,N)
GOTO 30

28 G =-1.0/C(4,N-1)
C
29 C(4,N) =G*C(3,N-1) + C(4,N)

C(2,N) =(G*C(2,N-1)+C(2,N))/C(4,N)

C
30 DO 40 J=L,1,-1

C(2,J) = (C(2,J)-C(3,J)*C(2,J+ 1))/C(4,J)
40 CONTINUE
C

DO 50 1=2,N
DTAU = C(3,I)
DIVDF 1 = (C(l1,I)-C( 1,I-1 ))/DTAU
DIVDF3 = C(2,I-1)+C(2,1)-2.0*DIVDF1
C(3,I- 1) =2.0 *(DI VDFI1-C(2,I- 1)-DIVDF3)/DTAU
C(4,I-1) = (DIVDF3JDTAU)*(6.OIDTAU)

50 CONTINUE

RETURN
END
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APPENDIX D: CN1DAT CONTROL FILE

ICASE,IRvITHDX,IMTHDYIMTHDZ 1 =Roe,2=McC,3=SW,4=vL

22 1 1 1
NEND
100
INS
1
IL, JL, KL
30, 47, 53
LLCTST,ICFL,CFLEXP,CFLMAX,CFL
1 5 1 0.9 0.01
IREST,CFCRHO,CFCEI,CFLPEN,CEXPPEN,INOFRZ
1 0.1 0.1 1. 0. 5

(IIJ/K)LMTR,OMEGA,OETA(IIJ/K),R(IIJ/K)DELT, (IIJ/K)ENTH,(IIJ/K)ISO

2 2 2 1. -1 -1 -1 0.05 0.05 0.05 2 2 2 0 1 1
R(IIJ/K)SPR
00 0
IDD(11213/4/5)
0 100 1
JDD( 1/2/3/4/5)
00 10 1
KDD( 1/2/3/4/5)
000 11
IPC,LMPLT,NSWPS,COEF,AA
2 1 2 0. 1.5
IADBWL,ALPHA,PI¶TWALLYIMINF,REL, RLSCL,TINT,HIMETRC

0 0.000000 0. 530.00 10. 1.0653E6 1.00 408.57 0
ITURB,ITBERZ,APLUS,CCP, CKLEB,CWK, SMLKBIGK, PRT,
CMUTMISDAMT
0 1 26. 2.08 0.3 0.25 0.4 1.68E-02 0.9 14. 0
IREAD,IGRID,WP3DOP,IDGBUG~MODPR.,IP3DMD,NRST,IFMATI,IFMRTO,IINT

0 2 2 0 10 5000000 1 1 1
IEXRNGS
0

IF IEXRNGS NON ZERO THEN,FOR
IDMY= I,IEXRNGS
CHRDMY,
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IEXMTHD,II.XRL,LEXRH,UEXRL,IJEXRH,IKEXRL,IKEXRHLEXLMT

JEXRNGS
0

IF JEXRNGS NON ZERO THEN,
FOR JDMY=1,JEXRNGS
CHRDMY
JEXMTHD,JIEXRL,JIEXRH,JJEXRL,JJEXRHJKEXRL,JKEXRH,JEXLMT

KEXRNGS
0

IF KEXRNGS NON ZERO THEN,FOR
KDMY= 1,KEXRNGS
CHRDMY
KEXMTHXKXRLKIXRH,KJEXRL,KJEXRHKKEXRL,KKEXRHKEXLMT

BOUNDARY CONDITIONS: Convention
IBCTYPE=I => Freestream fixed boundary condition

2 => Solid boundary
3 > Symmetry boundary
4 > Singular boundary
5 => Zero gradient boundary conditon
6 => Constant gradient boundary condition
7 > None
8 => Angle of attack (not mature)
9 => Pie

10 > Periodic
11 > Characteristic boundary conditions

IFACORD(LFACE),IRNGS(IFACE) Face 1
1 1
F 0 R E A C H R N G
IBC(ST/EN),JBC(ST/EN),KBC(ST/EN),IB CTYPE,(I/V/W)UBC,(I/J/K)INDBC
I 1 1 47 1 53 1 0 0 0 0 0 0
Face 2
21
IBC(ST/EN),JBC(ST/EN),KBC(ST/EN),IBCTYPE,(I/V/W)UBC,(I/J/K)INDBC

30 30 1 47 1 53 5 1 1 1 999 999 999
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Face 3
32
EBC(STIEN),JBC(STIEN),KBC(STIEN),LIBCTYPE,(I/V/W)UBC,(IIJ/K)INDBC

1 3 1 11 53 9 1 11 0 0 1
LBC(STIEN),JBC(STIEN),KBC(ST/EN),IBCTYPE,(INI/W)UBC,(IIJIK)LNDBC

3 301 1 1532 1 119999 999 999
Face 4
41
IBC(ST/EN),JBC(ST/EN),KBC(ST/EN),LBCTYPE,(IIV/W)UTBC,(IIJ/K)INDBC

1 30 47 47 1 53 5 1 11 999 999 999
Face 5
5 1
EBC(STIEN),JBC(STIEN),KBC(ST/EN),IBCTYPE,(I/VIW)UBC,(IIJIK)INDBC

1 30 1 47 1 1 3 1 1 -1 999 999 999
Face 6
61
IBC(ST/EN),JBC(ST/EN),KBC(STIEN),IBCTYPE,(INI/W)UIBC,(IIJ/K)1NDBC

1 30 1 47 53 53 3 1 1 -1 999 999 999

138



Bibliography

1. Anderson, Dale A. et al. Computational Fluid Mechanics and Heat Transfer.
New York, Hemisphere Publishing, 1984.

2. Anderson, John D. Fundamentals of Aerodynamics. New York, McGraw-Hill,
1984.

3. Anderson, John D. Hypersonic and High Temperature Gas Dynamics. New
York, McGraw-Hill, 1989.

4. Anderson, John D. et al. Hypersonic Waveriders for Planetary Atmospheres.
AIA, 90-0538 28"' Aerspace Sciences Meeting and Exhibit. Reno Nevada,
January 1990.

5. Anderson, John D. et al. Hypersonic Waveriders for High Altitude
Applications. AAI 91-0530 29" Aerspace Sciences Meeting and Exhibit. Reno
Nevada, January 1991.

6. Anderson, John D. et al. "Hypersonic Waveriders: Effects of Chemically
Reacting Flow and Viscous Interaction", AIM, 92-0302 30'* Aerspace Sciences
Meeting and Exhibit. Reno Nevada, January 1992.

7. Anderson, John D. Modern Compressible Flow With Historical Perspective.
New York, McGraw-Hill, 1982.

8. Beran, P. Class handout distributed in Aero 752, Computational Fluid
Dynamics. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB Ohio, March 1992.

9. Beran P. Class handout distributed in Aero 753, Computational Fluid
Dynamics. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB Ohio, July 1992.

10. Bowcutt, K.G. et al. Viscous Optimized Hypersonic Waveriders, AIAA 87-0272,
January 1987.

11. Bowcutt, K.G. et al. "Numerical Optimization of Conical Flow Waverider
Including Detailed Viscous Effects", Aerodynamics of Hypersonic Lifting
Vehicles, AGARD-CPP-428. March 1987

12. Corda, Stephen. et al. Viscous Optimized Waveriders, AIAA 88-0369 26"'
Aerospace Sciences Meeting and Exhibit. Reno Nevada, January 1988.

139



13. Corda, Stephen. Viscous Optimized Waveriders Designed from Flows over
Cones and Minimum Drag Bodies. PhD Dissertation, Department of Aerospace
Engineering, University of Maryland, College Park Maryland, 1988.

14. de Boor, Carl. A Practical Guide to Splines. New York, Springer-Verlag,
1978.

15. Gaitonde, Datta. Computation of Viscous Shock/Shock Hypersonic Interactions
with an Implicit Flux Split Scheme. Final Report, 1 September 1989-1
September 1990. Wright-Patterson AFB Ohio: Universal Energy Systems,
December 1990, (WRDC-TR-90-3076.

16. Gaitonde, Datta. The Performance of Flux-Split Algorithms in High-Speed
Flows. AIAA 92-0186 30' Aerospace Sciences Meeting and Exhibit. Reno
Nevada, January 1992.

17. Gaitonde, Datta. Personal Interviews. WL/FIMM, Wright-Patterson AFB
Ohio, 1 July through 30 October 1992.

18. Hasen, G. Class handout distributed in Aero 624, Advanced Hypersonics.
School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB Ohio, July 1992.

19. Hayes, Wallace D. and Probstein, Ronald F. Hypersonic Flow Theory, New
York, Academic Press, 1959.

20. Kuchemann, Dietrich. The Aerodynamic Design of Aircraft. New York,
Pergamon Press, 1978.

21. McLauglhin, Thomas A. Viscous Optimized Waveriders for Chemical
Equilibrium Flow, M.S. Thesis. Department of Aerospace Engineering,
University of Maryland, College Park Maryland, 1990.

22. Muller, B. et al. "Simulation of Hypersonic Waverider Flow". Proceeding of
the 1st International Hypersonic Waverider Symposium. University of Maryland,
College Park Maryland, October 1990.

23. Murthy, T. K. S. Computational Methods in Hypersonic Aerodynamics.
Computational Mechanics Publications, Kluwer Aerodynamics Publishers, 1992.

24. Nonweiler, Terence R.F. "The Waverider Wing In Retrospect and Prospect - A
Personalized View", Proceeding of the 1st International Hypersonic WweAi
Symposium. University of Maryland, College Park Maryland, October 1990.

140



25. Rasmussen, Maurice L. Optimization of Waverider Configurations Generated
from Axisymmetric Conical Flows.

26. Rasmussen, Maurice L. et al. On Waverider Shapes Applied to Aero-Space
Plane Forebody Configurations.

27. Rasmussen, Maurice L. Class Notes distributed in Aero 630, School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio

28. Stecklein, Capt Gregory 0. A Comparative Study of Numerical Versus
Analytical Waverider Solutions. M.S. thesis, AFIT/ENY/GAE91D-26. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
Ohio, December 1991.

29. Steger, Joseph L. and Warming, R.F. "Flux Vector Splitting of the Inviscid
Gasdynamic Equations with Application to Finite-Difference Methods", Journal
of Computational Physics, 40: 263-293 (April 1980)

30. Steinbrenner, John P. et al. The GRIDGEN 3D Multiple Block Grid Generation
System: Interim Report, 1 October 1987-1 October 1990. Contract F33615-87-
C-3003. Fort Worth Texas: General Dynamics Corporation, April 1991
(WRDC-TR-90-3022).

31. Takashima, N. et al. "Navier-Stokes Computation of a Viscous Optimized
Waverider", AIAA 92-0305 30IA Aerspace Sciences Meeting and Exhibit. Reno
Nevada, January 1992.

32. Townend, L.H. "Research and Design for Lifting Reentry", Progress in
Aerospace Sciences. 18:1-80, 1979.

33. Vanmol, D. Aerodynamic Heating to Hypersonic Waveriders, M.S. Thesis,
Department of Aerospace Engineering, University of Maryland, College Park
Maryland, 1991

34. Vincenti, Walter D. et al. Introduction to Physical Gas Dynamics. Malabar

Florida, John Wiley & Sons, 1965.

35. W.,ring, R.F et al. Math Comp. 29. 1975 1037

36. White, Frank M. Viscous Fluid Flow (Second Edition). New York, Mfia*
Hill, 1991.

37. Yee, H.C. A Class of High-Resolution Explicit and Implicit Shock-Capturing

141



Methods. NASA Technical Memorandum 101088, Ames Research Center,
California, February 1989.

142



Vita

First Lieutenant James A. Mundy V was born on 24 July 1965 in Roanoke

Virginia. He received his GED from the state of Massachusetts in 1986, and enlisted

in the United States Air Force. He attended the University of Maryland, graduating with

a Bachelor of Science degree in Aerospace Engineering in 1988. Upon graduation he

attended Air Force Officer Candidate School and received a reserve commission in the

USAF. He began as a test engineer for the 49" Test and Evaluation Squadron at

Barksdale AFB, Louisianna, where he was involved in the operational teseting and

evaluation of Strategic Air Command's airborne weapons systems. Lt Mundy served

at the 49' Test Squadron until May of 1991, when he entered the School of

Engineering, Air Force Institute of Technology.

143



Form Approved

REPORT DOCUMENTATION PAGE F No. App4-roe

Puobic reporting burden ?or this .. ollection of information is estimated to average I hour oer response, including the time for reviewing instructions. searching existing oata sources.
gathering ind maintaining the data needed, and comoleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect Of this

collection of information. including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washingtcn, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1992 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Effects of Viscosity on a Conically
Derived Waverider

6. AUTHOR(S)

James A. Mundy, iLt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Air Force Institute of Technology AFIT/GAE/ENY/92D-23
Wright-Patterson AFE, Ohio 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

WL/FI
Wright-Patterson AFB, Ohio 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited Distribution

13. ABSTRACT (Maximum 200words)
This study investigated the effects of the interaction between the viscous

boundary layer and the shock wave produced by a Mach 10 inviscid optimized
waverider. An implicit, Roe flux-splitting algorithm, developed by WL/FIIW, was
used to solve the flow field. A validation for the inviscid version of the CFD
algorithm was accomplished by comparing the numerical data produced by the CFD
code to the analytic results derived by Rasmussen, and by comparison to results
of the explicit version of the same Roe flux-splitting code. The computational
results compared favorably. The inviscid case studied using the implicit code
produced results identical, for all practical purposes, to those of the explicit
code, though approximately twice as quickly. The results of the viscous flow
case matched well with the results predicted by theory. The lift to drag ratio
calculated, 5.74, is comparable to the results of other researchers.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Inviscid Optimized Waverider, Navier-Stokes Solution, 158
Viscous Flow, Hypersonic Vehicle 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLABSIFIZD UNCLASSIFIED UNCLASSIFIED UL

NSN 7540401-280-5500 Standard Form 298 (Rev. 2-89)
Precnribed by ANSI $td. Z39.16
291. 102


